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Combinatorial Optimisation
• Important (many real-world applications) 
• Hard to solve (usually NP-hard)

• Examples:
• Traveling Salesman Problem
• Knapsack Problem
• Vehicle/Arc Routing Problem
• Timetabling problem
• Map Colouring
• …
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Example: Vehicle Routing Problem with Time 
Windows



Methods for Combinatorial Optimisation
• Exact methods
• Mathematical programming

• Approximated methods (heuristics)
• (Constructive) Heuristics
• Search-based Heuristics (Meta-heuristics)
• Hyper-heuristics
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Mathematical Programming
• Guarantee Optimality
• Very mathematical demanding
• Can be very slow
• Not flexible in stochastic/dynamic 

environment
• Still need some heuristics (e.g. for branching)
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(Constructive) Heuristics
• Incrementally construct a solution 

from scratch
• Easy to understand and implement
• Fast
• Reasonably good solutions
• Cannot guarantee optimality
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Example: Nearest Neighbor 
Heuristic for TSP

Start



Search-based Heuristics (Meta-heuristics)
• Iteratively improve one or more solutions
• Produce high-quality solutions
• Faster than mathematical programming
• Can embed domain knowledge
• Can combine with constructive heuristics (initial solutions)
• Not flexible in stochastic/dynamic environment
• Not scalable well to large problem size
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Hyper-heuristics
• Search for heuristics rather than solutions
• Fast (Response immediately in dynamic environment)
• Flexible (Solutions can be applied to a range of problem instances)
• Scalable to large problems
• Can discover new knowledge for problem solving 

• A typical example: Genetic Programming Hyper-Heuristic (GPHH) for 
evolving dispatching rules for job shop scheduling
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Branke, J., Nguyen, S., Pickardt, C.W. and Zhang, M., 2016. Automated design of production scheduling heuristics: a review. 
IEEE Transactions on Evolutionary Computation, 20(1), pp.110-124.



Genetic Programming
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• Evolve a population of computer programs
• Crossover and mutation operators according to representation (e.g. 

tree, graph)



Genetic Programming as Hyper-Heuristic
• Meta-algorithms
• An algorithm to generate a solution given a problem instance
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Genetic Programming as Hyper-Heuristic
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Issues for GPHH
• How to represent a heuristic (GP program)?
• Tree?
• Graph?
• Sequence?

• How to evaluate a heuristic?
• Performance on a set of problem instances?
• Generalisation? Performance on unseen instances?
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Representation of Heuristics
• Example: Constructive heuristic for TSP
• Step 0: 𝑆 = (), all nodes unvisited;
• Step 1: Select an unvisited node 𝑣∗ based on some priority function, 𝑆 =
𝑆, 𝑣∗ ;

• Step 2: If all nodes visited, return 𝑆, otherwise, go back to Step 1;
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Meta-algorithm



Representation of Heuristics
• Calculate the priority for all the unvisited node using the priority 

function ℎ(𝑣; Θ), then select the node with the highest priority
• Nearest neighbour heuristic: ℎ 𝑣;Θ = −𝑑(𝑣, 𝑆)

• For evolving constructive heuristics for TSP using GP, one can 
represent the priority functions as syntax trees
• Terminals: state features (e.g. location, distance)
• Functions: +, -, *, /, min, max, …
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Representation of Heuristics
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GP crossover
GP mutation

Poli, R., Langdon, W.B., McPhee, N.F. and Koza, J.R., 2008. A field guide to genetic programming.

• Evolve the priority trees using GP crossover/mutation



Evaluation of Heuristics
• A heuristic 𝜋 produces a solution given a problem instance
• Performance on an instance 𝑖: 𝑝𝑒𝑟𝑓 𝜋, 𝑖 = objective value of the 

produced solution to the instance 𝑖
• Overall performance on a set of instances 𝐼: 𝑝𝑒𝑟𝑓 𝜋, 𝐼 = mean of 

the normalised objective values of the produced solutions to each 
instance 𝑖 ∈ 𝐼
• Normalise by the lower bound
• Normalise by the performance of reference heuristic/method

• But a heuristic perform well on the training instance(s) may not 
perform well on unseen instances (overfitting)
• Generalisation is an important issue (performance on unseen 

instances)
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Evaluation of Heuristics
• Various strategies to improve generalisation
• Use comprehensive training instances
• Use small training set + change training set after each generation (similar to 

stochastic gradient descent/mini-batch in machine learning)
• Regularisation: restrict the maximal depth of GP trees
• Restrict the structure of GP trees (e.g. strongly-typed GP, grammar-based GP)
• …
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In This Talk…
• Evolve dispatching rules for job shop scheduling
• Evolve heuristics for arc routing problem
• Evolve heuristics for memetic algorithm in traveling thief problem
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GPHH for Evolving 
Dispatching Rules for 
Job Shop Scheduling



Job Shop Scheduling
• Process a set of jobs with a set of machines
• Each job has a sequence of operations, each processed by a certain 

machine
• Each job has arrival time, due date, weight, etc
• Each operation has a processing time
• Objective: minimise makespan/flowtime/tardiness
• Constraint
• Each machine can process at most one operation at a time
• An operation cannot start until its preceding operations have completed
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Job Shop Scheduling
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• Car manufacturing
• 3 machines (Engine Hoist, Wheel 

Station, Inspector)
• 2 jobs, each with 3 operations
• 1) AddEngine
• 2) AddWheel
• 3) Inspect



Dynamic Job Shop Scheduling
• Unpredicted events (e.g. new job arrivals) occur during the execution 

of the schedule
• Immediate response is needed
• Solution optimisation methods are usually too slow to respond 

effectively
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Job3 [AddEngine3 -> AddWheels3 -> Inspect3] arrives



Dispatching Rule
• Whenever a machine becomes idle and its queue is not empty
• Calculate the priority of the operations waiting in the queue
• Select the most prior operation to process next
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SPT rule: 
Priority = - ProcTime



Dispatching Rule
• Many rules have been designed manually (FCFS, SPT, EDD, PT+WINQ, 

2PT+WINQ+NPT, WATC, …)

• Can handle dynamic JSS very well
• Quick response
• Good scalability (work well for huge problems)
• Flexibility (can apply to a range of JSS instances)

• Manually designing effective dispatching rules is very challenging
• Many interdependent factors (features) to consider

• Evolve dispatching rules using GPHH
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Evolve Dispatching Rules by GPHH
• Meta-algorithm: discrete event simulation
• Start from time 0, empty schedule, initial jobs waiting in their machines
• New jobs may arrive in real time (e.g. Poisson process)
• As soon as a machine is idle and there are jobs waiting in its queue, select a 

job from its queue to be processed next using the dispatching rule
• Stop if all jobs completed
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SPT rule



Evolve Dispatching Rules by GPHH
• Objectives
• Makespan: max𝐶"
• Mean flowtime: #

$
∑"%#$ 𝐶" − 𝑎"

• Mean weighted tardiness: #
$
∑"%#$ 𝑤"𝑇", where 𝑇" = max{𝐶" − 𝑑" , 0}
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Representation
• Single priority tree for all the machines
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Representation
• Machine-specific priority trees
• Effective especially when machines have different scenarios
• Unbalanced job shop

• Two machines with different utilisations
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Hunt, R., Johnston, M. and Zhang, M., 2014, July. Evolving machine-specific dispatching rules for a two-machine job shop 
using genetic programming. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 618-625). IEEE.



Representation
• Machine-specific priority trees
• Effective especially when machines have different scenarios
• Unbalanced job shop

• Bottleneck machines vs non-bottleneck machines
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Jakobović, D. and Budin, L., 2006, April. Dynamic scheduling with genetic programming. In European Conference on Genetic 
Programming (pp. 73-84). Springer Berlin Heidelberg.



Representation
• Decision tree-like representation
• Allow idle machines to wait some time even with non-empty queue
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Nguyen, S., Zhang, M., Johnston, M. and Tan, K.C., 2013. A computational study of representations in genetic programming 
to evolve dispatching rules for the job shop scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5), 
pp.621-639.



Representation
• Dimensionality-Aware GP
• Different attributes have different dimensions (units: time, count, weight, …)
• Keep semantic correctness with respect to dimensionality
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meaningless

Đurasević, M., Jakobović, D. and Knežević, K., 2016. Adaptive scheduling on unrelated machines with genetic programming. 
Applied Soft Computing, 48, pp.419-430.



Feature Selection for GP Terminals
• Many features: huge search space
• Some features are redundant/irrelevant (e.g. due date is irrelevant 

when minimising makespan)
• Select a subset of important features
• Feature selection is challenging as it depends on 
• Job shop scenario (utilisation level, due date factor, …)
• Objective (flowtime, tardiness, …)
• Complex interaction between features

• Learn the importance of features
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Feature Selection for GP Terminals
• Ideally, we only need the features that contribute to the optimal 

individual
• However, the optimal individual is unknown

• Approximation
• If a feature contributes to a better individual, then it is more likely to 

contribute to the optimal individual
• If a feature contributes to more individuals, then it is more likely to 

contribute to the optimal individual
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Feature Selection for GP Terminals
• Use the number of appearances to measure the contribution of a 

feature to an individual
• Update the importance estimation during GP process

• During mutation, the probability of choosing a feature when 
generating the new sub-tree depends on its importance
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Riley, M., Mei, Y. and Zhang, M., 2016, November. Improving job shop dispatching rules via terminal weighting and adaptive 
mutation in genetic programming. In Evolutionary Computation (CEC), 2016 IEEE Congress on (pp. 3362-3369). IEEE.
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Feature Selection for GP Terminals
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• Experiments
• 8 scenarios (4 utilisation levels× 2 operation settings)
• Utilisation: 0.8, 0.85, 0.9, 0.95
• Ops:

• Missing: uniform from 2 to the number of machines
• Full: equal to the number of machines

• 𝜆 values: 1, 2, 5, 10
• 2 mutation rates: 0.1 and 0.3



Feature Selection for GP Terminals
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Feature Selection for GP Terminals
• Using number of appearances may be misleading
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Redundant(a/b) + ((c� c) ⇤ d) = a/b

But feature c appears twice, which is more than a and b.



Feature Selection for GP Terminals
• A new contribution measure
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Fit(tree) = 0.9

1

Fit(tree|b=1) = 1.1

Contribution(b) = 0.2

Contribution(c) = 0
Contribution(d) = 0

contribution(feature, tree) =

fit(tree|feature = 1)� fit(tree)

Yi Mei, Mengjie Zhang, Su Nguyen, "Feature Selection in Evolving Job Shop Dispatching Rules with Genetic Programming," 
Genetic and Evolutionary Computation Conference (GECCO), Denver, USA, 2016.



Feature Selection for GP Terminals
• Step 1: Conduct 30 pilot GP runs, collect 30 best individuals
• Step 2: Calculate contribution of each feature to each individual
• Step 3: Select a feature if it contributes to more than 15 individuals

38

Min weighted tardiness



Feature Selection for GP Terminals
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Evaluation Model
• Standard
• A set of static instances (normalised by lower bound/reference rule)
• Dynamic discrete event simulation(s)

• 10 machines, 2500 jobs, 2~10 operations per job
• 500 warm-up jobs for steady-state performance
• Different utilisation levels (0.85, 0.9, 0.95) and due date factors (3, 4, 5)

• Change the random seed of the simulation(s) at each generation
• Much better generalisation
• Much faster (only one replication per generation)
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Hildebrandt, T., Heger, J. and Scholz-Reiter, B., 2010, July. Towards improved dispatching rules for complex shop floor 
scenarios: a genetic programming approach. In Proceedings of the 12th annual conference on Genetic and evolutionary 
computation (pp. 257-264). ACM.



Surrogate Evaluation Models

41

Current population

Crossover/mutation

Surrogate 
model

Evaluate using surrogate

Full 
evaluation

Best surrogate 
fitness



Surrogate Evaluation Models
• Smaller job shop simulation
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Nguyen, S., Zhang, M. and Tan, K.C., Surrogate-Assisted Genetic Programming With Simplified Models for Automated Design 
of Dispatching Rules. IEEE Transactions on Cybernetics, in press, DOI 10.1109/TCYB.2016.2562674.

Original Surrogate

No. Machines 10 5

No. Jobs 5000 500

No. Warmup Jobs 500 100

Min Ops 2 2

Max Ops 14 7



Surrogate Evaluation Models
• Phenotypic characterisation
• A set of decision situations and a reference rule
• For each decision situation, measure the difference between the reference 

rule and the characterised rule
• Characterised by a decision vector
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Hildebrandt, T. and Branke, J., 2015. On using surrogates with genetic programming. Evolutionary computation, 23(3), 
pp.343-367.



Surrogate Evaluation Models
• If two rules have similar phenotypic characterisation, i.e. decision 

vectors, then they tend to have similar fitness values
• A <decision vector, fitness> database (the fully evaluated individuals 

in the last 2 generations)

• Nearest neighbour regression – set the approximated fitness to the 
fitness of the closest rule in the database
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Surrogate vs Reusability
• In static case, we aim to train dispatching rules using small instances 

(surrogate), which can be reused on large instances

• Such reusability strongly relates to 𝒓𝒂𝒕𝒊𝒐 = 𝒏𝒖𝒎𝑱𝒐𝒃𝒔
𝒏𝒖𝒎𝑴𝒂𝒄𝒉𝒊𝒏𝒆𝒔
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Yi Mei, Mengjie Zhang, "A Comprehensive Analysis on Reusability of GP-Evolved Job Shop Dispatching Rules," IEEE World 
Congress in Computational Intelligence (WCCI), Vancouver, Canada, 2016.
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GPHH for Evolving 
Heuristics for Arc 
Routing Problem



• A Graph
• A set of arcs to be served (tasks)
• A special node (depot)

• Arc
• Demand
• Serving cost
• Deadheading cost

• A fleet of vehicles
• Capacity depot

Arc Routing Problem



• A solution
• A set of routes to serve the tasks

• Objective
• Minimize the total cost

• Constraints
• Each task is served exactly once
• Each vehicle starts and ends at the 

depot
• The total demand served by each 

vehicle cannot exceed its capacity

depot

Arc Routing Problem



Developmental CARP Solving
• A single vehicle, but can go back to refill

• Meta-algorithm
• Step 0: A vehicle at the depot, all tasks unserved;
• Step 1: Select an unserved task by the heuristic function;
• Step 2: If the vehicle can serve the task without violating the capacity 

constraint, then go; otherwise go back to the depot to refill;
• Step 3: If all the tasks have been served, then go back to depot and stop; 

otherwise go to Step 1;
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Weise, T., Devert, A. and Tang, K., 2012, July. A developmental solution to (dynamic) capacitated arc routing problems using 
genetic programming. In Proceedings of the 14th annual conference on Genetic and evolutionary computation (pp. 831-838). 
ACM.



Developmental CARP Solving
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depot
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Go to 3, serve <3,2>
Go to 1, serve <1,7>
Go to 9, serve <9,10>
Go back to depot
Go to 4, serve <4,5>
Go to 6, serve <6,8>
Go to 14, serve <14,13>
Go back to depot
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Go to 11, serve <11,12>
Go back to depot
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Evolve Heuristic Function to Make Decisions
• Standard GP
• A single tree to calculate heuristic value
• Select the task with the lowest heuristic value
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Terminal Description

Demand(e) Demand of the task e

Load Remaining load of the vehicle / capacity

Cost(e) Cost of the task e

DepotCost(e) Cost to go back to depot from task e

Satisfied Fraction of satisfied (served) tasks

Last(e) Heuristic value calculated in the last round

Functions

+,  -,  *, /,  max,  exp,  sin, 
angle



Results

• Outperform existing heuristics in uncertain environment
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Open Issues
• Generalisation
• Dynamic problems (new tasks arrive in real time)
• Multiple vehicles serving simultaneously
• Better meta-algorithms
• Interpretability
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GPHH for Evolving 
Heuristics for Memetic 

Algorithm in TTP



Traveling Thief Problem
• A new benchmark problem for studying interdependent components
• A combination of TSP and KP

• A set of cities
• Each city has an item
• Each item has a value and a weight
• A thief with capacity and a speed depending on weight carried

• Visit all the cities and collect some items to maximise profit
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Traveling Thief Problem
• A solution contains a TSP tour and a picking plan

1
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Tour: (1,5,3,2,4,6,1)
Picking plan: (0,0,1,0,0,1,0)



Memetic Algorithm for TTP
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Mei, Y., Li, X. and Yao, X., 2014, December. Improving efficiency of heuristics for the large scale traveling thief problem. In 
Asia-Pacific Conference on Simulated Evolution and Learning (pp. 631-643). Springer International Publishing.

Very effective especially 
for solving large scale TTP

Highly dependent on 
heuristic



Item-Picking Heuristic Given Tour
• Different from conventional knapsack heuristics
• The efficiency of an item depends on
• 𝒗𝒂𝒍𝒖𝒆
𝒘𝒆𝒊𝒈𝒉𝒕
• Distance from where it is to the starting city (not to slow down too early)
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Item-Picking Heuristic Given Tour
• A very sophisticated heuristic
• Step 0: All items not picked, current load of the tour is zero;
• Step 1: For each item, calculate the best gain when the tour is empty;
• Step 2: Sort the item in the decreasing order of the best gain;
• Step 3: For each sorted item, if feasible and expected gain under the current 

load of the tour is positive, then pick the item and update the current load of 
the tour
• Step 4: If all sorted item is scanned, stop; otherwise go to the next sorted 

item;

• Complex calculation formulas for the best gain and expected gain
• Evolve using GP
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Item-Picking Heuristic Given Tour
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Mei, Y., Li, X., Salim, F. and Yao, X., 2015, May. Heuristic evolution with genetic programming for traveling thief problem. In 
2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 2753-2760). IEEE.



Item-Picking Heuristic Given Tour
• Evaluation Model
• Three small TTP instances
• Run MA with the heuristic function once, and get the best solution
• Fitness of the heuristic = the fitness of this best solution
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Functions

+, -, *, /



Item-Picking Heuristic Given Tour
• Very similar performance as the manually designed heuristic
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Conclusion
• Genetic Programming has been successfully used as a hyper-heuristic 

for automatically designing heuristics
• Very useful in combinatorial optimisation, where heuristics are 

usually needed for decision making
• Especially powerful in dynamic environment, in which immediate 

response is needed
• Many open issues to be addressed
• Representation
• Evaluation model
• Generalisation
• Interpretability
• …
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We’re Looking for PhD Students!
• 5-8 fully funded PhD scholarships
• Supported by The Royal Society of NZ’s 

Marsden Fund (the most prestigious in NZ, 
<8% success rate)
• $23,500-27,500 NZD/year for up to 3 years
• Coolest Little Capital in the world
• Research No. 1 in NZ (2015)
• Closing date: 1 March 2017.
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We’re Looking for PhD Students!
• Research Areas
• Evolutionary Scheduling, Routing and Combinatorial Optimisation
• Evolutionary Feature Selection and Dimensionality Reduction
• Evolutionary Web Service Composition and Resource Allocation
• Evolutionary Image Analysis and Pattern Recognition
• Evolutionary Machine Learning and Transfer Learning
• Genetic Programming, PSO, Learning Classifier Systems

• More details
• https://ecs.victoria.ac.nz/Groups/ECRG/ResearchAreas#Areas

• Contact
• Dr Yi Mei: yi.mei@ecs.vuw.ac.nz
• Dr. Bing Xue: bing.xue@ecs.vuw.ac.nz
• Prof. Mengjie Zhang: mengjie.zhang@ecs.vuw.ac.nz
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We’re Looking for PhD Students!

• Requirement
• First class Honours or Masters degree in Computer Science or 

Statistics/Operations Research (GPA > 3.5/4.0)
• Research experience/publications in EC, combinatorial optimisation, …
• Strong programming skills in Java, Python, R, …
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