
Genetic Programming Hyper-heuristics
for Combinatorial Optimisation

Dr. Yi Mei
yi.mei@ecs.vuw.ac.nz

Evolutionary Computation Research Group
Victoria University of Wellington

IEEE Webinar, Dec 2016

1

Combinatorial Optimisation
• Important (many real-world applications)
• Hard to solve (usually NP-hard)

• Examples:
• Traveling Salesman Problem
• Knapsack Problem
• Vehicle/Arc Routing Problem
• Timetabling problem
• Map Colouring
• …

2

Example: Vehicle Routing Problem with Time
Windows

Methods for Combinatorial Optimisation
• Exact methods
• Mathematical programming

• Approximated methods (heuristics)
• (Constructive) Heuristics
• Search-based Heuristics (Meta-heuristics)
• Hyper-heuristics

3

Mathematical
Programming

(Constructive)
Heuristics

Search-based
(Meta-) Heuristics

Hyper-heuristicsHelp

Help

Help

Help

Mathematical Programming
• Guarantee Optimality
• Very mathematical demanding
• Can be very slow
• Not flexible in stochastic/dynamic

environment
• Still need some heuristics (e.g. for branching)

4

(Constructive) Heuristics
• Incrementally construct a solution

from scratch
• Easy to understand and implement
• Fast
• Reasonably good solutions
• Cannot guarantee optimality

5

Example: Nearest Neighbor
Heuristic for TSP

Start

Search-based Heuristics (Meta-heuristics)
• Iteratively improve one or more solutions
• Produce high-quality solutions
• Faster than mathematical programming
• Can embed domain knowledge
• Can combine with constructive heuristics (initial solutions)
• Not flexible in stochastic/dynamic environment
• Not scalable well to large problem size

6

Simulated
Annealing

Tabu
Search

Genetic
Algorithms

Variable
Neighborhood

Search
Guided Local

Search PSO
Ant Colony

System

Memetic
Algorithms

Hyper-heuristics
• Search for heuristics rather than solutions
• Fast (Response immediately in dynamic environment)
• Flexible (Solutions can be applied to a range of problem instances)
• Scalable to large problems
• Can discover new knowledge for problem solving

• A typical example: Genetic Programming Hyper-Heuristic (GPHH) for
evolving dispatching rules for job shop scheduling

7

Branke, J., Nguyen, S., Pickardt, C.W. and Zhang, M., 2016. Automated design of production scheduling heuristics: a review.
IEEE Transactions on Evolutionary Computation, 20(1), pp.110-124.

Genetic Programming

8

• Evolve a population of computer programs
• Crossover and mutation operators according to representation (e.g.

tree, graph)

Genetic Programming as Hyper-Heuristic
• Meta-algorithms
• An algorithm to generate a solution given a problem instance

9

Component
evolved by GP

Problem
instance Solution

Meta-algorithm

Genetic Programming as Hyper-Heuristic

10

Issues for GPHH
• How to represent a heuristic (GP program)?
• Tree?
• Graph?
• Sequence?

• How to evaluate a heuristic?
• Performance on a set of problem instances?
• Generalisation? Performance on unseen instances?

11

Representation of Heuristics
• Example: Constructive heuristic for TSP
• Step 0: 𝑆 = (), all nodes unvisited;
• Step 1: Select an unvisited node 𝑣∗ based on some priority function, 𝑆 =
𝑆, 𝑣∗ ;

• Step 2: If all nodes visited, return 𝑆, otherwise, go back to Step 1;

12

Meta-algorithm

Representation of Heuristics
• Calculate the priority for all the unvisited node using the priority

function ℎ(𝑣; Θ), then select the node with the highest priority
• Nearest neighbour heuristic: ℎ 𝑣;Θ = −𝑑(𝑣, 𝑆)

• For evolving constructive heuristics for TSP using GP, one can
represent the priority functions as syntax trees
• Terminals: state features (e.g. location, distance)
• Functions: +, -, *, /, min, max, …

13

Representation of Heuristics

14

GP crossover
GP mutation

Poli, R., Langdon, W.B., McPhee, N.F. and Koza, J.R., 2008. A field guide to genetic programming.

• Evolve the priority trees using GP crossover/mutation

Evaluation of Heuristics
• A heuristic 𝜋 produces a solution given a problem instance
• Performance on an instance 𝑖: 𝑝𝑒𝑟𝑓 𝜋, 𝑖 = objective value of the

produced solution to the instance 𝑖
• Overall performance on a set of instances 𝐼: 𝑝𝑒𝑟𝑓 𝜋, 𝐼 = mean of

the normalised objective values of the produced solutions to each
instance 𝑖 ∈ 𝐼
• Normalise by the lower bound
• Normalise by the performance of reference heuristic/method

• But a heuristic perform well on the training instance(s) may not
perform well on unseen instances (overfitting)
• Generalisation is an important issue (performance on unseen

instances)

15

Evaluation of Heuristics
• Various strategies to improve generalisation
• Use comprehensive training instances
• Use small training set + change training set after each generation (similar to

stochastic gradient descent/mini-batch in machine learning)
• Regularisation: restrict the maximal depth of GP trees
• Restrict the structure of GP trees (e.g. strongly-typed GP, grammar-based GP)
• …

16

In This Talk…
• Evolve dispatching rules for job shop scheduling
• Evolve heuristics for arc routing problem
• Evolve heuristics for memetic algorithm in traveling thief problem

17

18

GPHH for Evolving
Dispatching Rules for
Job Shop Scheduling

Job Shop Scheduling
• Process a set of jobs with a set of machines
• Each job has a sequence of operations, each processed by a certain

machine
• Each job has arrival time, due date, weight, etc
• Each operation has a processing time
• Objective: minimise makespan/flowtime/tardiness
• Constraint
• Each machine can process at most one operation at a time
• An operation cannot start until its preceding operations have completed

19

Job Shop Scheduling

20

• Car manufacturing
• 3 machines (Engine Hoist, Wheel

Station, Inspector)
• 2 jobs, each with 3 operations
• 1) AddEngine
• 2) AddWheel
• 3) Inspect

Dynamic Job Shop Scheduling
• Unpredicted events (e.g. new job arrivals) occur during the execution

of the schedule
• Immediate response is needed
• Solution optimisation methods are usually too slow to respond

effectively

21

Job3 [AddEngine3 -> AddWheels3 -> Inspect3] arrives

Dispatching Rule
• Whenever a machine becomes idle and its queue is not empty
• Calculate the priority of the operations waiting in the queue
• Select the most prior operation to process next

22

SPT rule:
Priority = - ProcTime

Dispatching Rule
• Many rules have been designed manually (FCFS, SPT, EDD, PT+WINQ,

2PT+WINQ+NPT, WATC, …)

• Can handle dynamic JSS very well
• Quick response
• Good scalability (work well for huge problems)
• Flexibility (can apply to a range of JSS instances)

• Manually designing effective dispatching rules is very challenging
• Many interdependent factors (features) to consider

• Evolve dispatching rules using GPHH

23

Evolve Dispatching Rules by GPHH
• Meta-algorithm: discrete event simulation
• Start from time 0, empty schedule, initial jobs waiting in their machines
• New jobs may arrive in real time (e.g. Poisson process)
• As soon as a machine is idle and there are jobs waiting in its queue, select a

job from its queue to be processed next using the dispatching rule
• Stop if all jobs completed

24

SPT rule

Evolve Dispatching Rules by GPHH
• Objectives
• Makespan: max𝐶"
• Mean flowtime: #

$
∑"%#$ 𝐶" − 𝑎"

• Mean weighted tardiness: #
$
∑"%#$ 𝑤"𝑇", where 𝑇" = max{𝐶" − 𝑑" , 0}

25

Dispatching
rule

Job shop
instance/simulation

Objective value

Fitness

Representation
• Single priority tree for all the machines

26

Representation
• Machine-specific priority trees
• Effective especially when machines have different scenarios
• Unbalanced job shop

• Two machines with different utilisations

27

Hunt, R., Johnston, M. and Zhang, M., 2014, July. Evolving machine-specific dispatching rules for a two-machine job shop
using genetic programming. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 618-625). IEEE.

Representation
• Machine-specific priority trees
• Effective especially when machines have different scenarios
• Unbalanced job shop

• Bottleneck machines vs non-bottleneck machines

28

Jakobović, D. and Budin, L., 2006, April. Dynamic scheduling with genetic programming. In European Conference on Genetic
Programming (pp. 73-84). Springer Berlin Heidelberg.

Representation
• Decision tree-like representation
• Allow idle machines to wait some time even with non-empty queue

29

Nguyen, S., Zhang, M., Johnston, M. and Tan, K.C., 2013. A computational study of representations in genetic programming
to evolve dispatching rules for the job shop scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5),
pp.621-639.

Representation
• Dimensionality-Aware GP
• Different attributes have different dimensions (units: time, count, weight, …)
• Keep semantic correctness with respect to dimensionality

30

meaningless

Đurasević, M., Jakobović, D. and Knežević, K., 2016. Adaptive scheduling on unrelated machines with genetic programming.
Applied Soft Computing, 48, pp.419-430.

Feature Selection for GP Terminals
• Many features: huge search space
• Some features are redundant/irrelevant (e.g. due date is irrelevant

when minimising makespan)
• Select a subset of important features
• Feature selection is challenging as it depends on
• Job shop scenario (utilisation level, due date factor, …)
• Objective (flowtime, tardiness, …)
• Complex interaction between features

• Learn the importance of features

31

Feature Selection for GP Terminals
• Ideally, we only need the features that contribute to the optimal

individual
• However, the optimal individual is unknown

• Approximation
• If a feature contributes to a better individual, then it is more likely to

contribute to the optimal individual
• If a feature contributes to more individuals, then it is more likely to

contribute to the optimal individual

32

Feature Selection for GP Terminals
• Use the number of appearances to measure the contribution of a

feature to an individual
• Update the importance estimation during GP process

• During mutation, the probability of choosing a feature when
generating the new sub-tree depends on its importance

33

Riley, M., Mei, Y. and Zhang, M., 2016, November. Improving job shop dispatching rules via terminal weighting and adaptive
mutation in genetic programming. In Evolutionary Computation (CEC), 2016 IEEE Congress on (pp. 3362-3369). IEEE.

wi wi +
PX

j=1

countijPn
k=1 countkj

⇥ fitnessj

pi =
w�

iPn
k=1 w

�
k

Feature Selection for GP Terminals

34

• Experiments
• 8 scenarios (4 utilisation levels× 2 operation settings)
• Utilisation: 0.8, 0.85, 0.9, 0.95
• Ops:

• Missing: uniform from 2 to the number of machines
• Full: equal to the number of machines

• 𝜆 values: 1, 2, 5, 10
• 2 mutation rates: 0.1 and 0.3

Feature Selection for GP Terminals

35
� = 2 or 5 mutation rate = 0.3

Feature Selection for GP Terminals
• Using number of appearances may be misleading

36

Redundant(a/b) + ((c� c) ⇤ d) = a/b

But feature c appears twice, which is more than a and b.

Feature Selection for GP Terminals
• A new contribution measure

37

Fit(tree) = 0.9

1

Fit(tree|b=1) = 1.1

Contribution(b) = 0.2

Contribution(c) = 0
Contribution(d) = 0

contribution(feature, tree) =

fit(tree|feature = 1)� fit(tree)

Yi Mei, Mengjie Zhang, Su Nguyen, "Feature Selection in Evolving Job Shop Dispatching Rules with Genetic Programming,"
Genetic and Evolutionary Computation Conference (GECCO), Denver, USA, 2016.

Feature Selection for GP Terminals
• Step 1: Conduct 30 pilot GP runs, collect 30 best individuals
• Step 2: Calculate contribution of each feature to each individual
• Step 3: Select a feature if it contributes to more than 15 individuals

38

Min weighted tardiness

Feature Selection for GP Terminals

39

82
84
86
88
90
92
94
96
98

1 2 3 4 5 6 7 8

Av
g.

 F
it%

 R
el

. A
TC

Scenario

Min. Weighted Tardiness

All Attributes
Selected Attributes

Evaluation Model
• Standard
• A set of static instances (normalised by lower bound/reference rule)
• Dynamic discrete event simulation(s)

• 10 machines, 2500 jobs, 2~10 operations per job
• 500 warm-up jobs for steady-state performance
• Different utilisation levels (0.85, 0.9, 0.95) and due date factors (3, 4, 5)

• Change the random seed of the simulation(s) at each generation
• Much better generalisation
• Much faster (only one replication per generation)

40

Hildebrandt, T., Heger, J. and Scholz-Reiter, B., 2010, July. Towards improved dispatching rules for complex shop floor
scenarios: a genetic programming approach. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation (pp. 257-264). ACM.

Surrogate Evaluation Models

41

Current population

Crossover/mutation

Surrogate
model

Evaluate using surrogate

Full
evaluation

Best surrogate
fitness

Surrogate Evaluation Models
• Smaller job shop simulation

42

Nguyen, S., Zhang, M. and Tan, K.C., Surrogate-Assisted Genetic Programming With Simplified Models for Automated Design
of Dispatching Rules. IEEE Transactions on Cybernetics, in press, DOI 10.1109/TCYB.2016.2562674.

Original Surrogate

No. Machines 10 5

No. Jobs 5000 500

No. Warmup Jobs 500 100

Min Ops 2 2

Max Ops 14 7

Surrogate Evaluation Models
• Phenotypic characterisation
• A set of decision situations and a reference rule
• For each decision situation, measure the difference between the reference

rule and the characterised rule
• Characterised by a decision vector

43

Hildebrandt, T. and Branke, J., 2015. On using surrogates with genetic programming. Evolutionary computation, 23(3),
pp.343-367.

Surrogate Evaluation Models
• If two rules have similar phenotypic characterisation, i.e. decision

vectors, then they tend to have similar fitness values
• A <decision vector, fitness> database (the fully evaluated individuals

in the last 2 generations)

• Nearest neighbour regression – set the approximated fitness to the
fitness of the closest rule in the database

44

Surrogate vs Reusability
• In static case, we aim to train dispatching rules using small instances

(surrogate), which can be reused on large instances

• Such reusability strongly relates to 𝒓𝒂𝒕𝒊𝒐 = 𝒏𝒖𝒎𝑱𝒐𝒃𝒔
𝒏𝒖𝒎𝑴𝒂𝒄𝒉𝒊𝒏𝒆𝒔

45

Yi Mei, Mengjie Zhang, "A Comprehensive Analysis on Reusability of GP-Evolved Job Shop Dispatching Rules," IEEE World
Congress in Computational Intelligence (WCCI), Vancouver, Canada, 2016.

46

GPHH for Evolving
Heuristics for Arc
Routing Problem

• A Graph
• A set of arcs to be served (tasks)
• A special node (depot)

• Arc
• Demand
• Serving cost
• Deadheading cost

• A fleet of vehicles
• Capacity depot

Arc Routing Problem

• A solution
• A set of routes to serve the tasks

• Objective
• Minimize the total cost

• Constraints
• Each task is served exactly once
• Each vehicle starts and ends at the

depot
• The total demand served by each

vehicle cannot exceed its capacity

depot

Arc Routing Problem

Developmental CARP Solving
• A single vehicle, but can go back to refill

• Meta-algorithm
• Step 0: A vehicle at the depot, all tasks unserved;
• Step 1: Select an unserved task by the heuristic function;
• Step 2: If the vehicle can serve the task without violating the capacity

constraint, then go; otherwise go back to the depot to refill;
• Step 3: If all the tasks have been served, then go back to depot and stop;

otherwise go to Step 1;

49

Weise, T., Devert, A. and Tang, K., 2012, July. A developmental solution to (dynamic) capacitated arc routing problems using
genetic programming. In Proceedings of the 14th annual conference on Genetic and evolutionary computation (pp. 831-838).
ACM.

Developmental CARP Solving

50

depot

1 2 3
4

5

7
8

9
10

11 12

13
14

Go to 3, serve <3,2>
Go to 1, serve <1,7>
Go to 9, serve <9,10>
Go back to depot
Go to 4, serve <4,5>
Go to 6, serve <6,8>
Go to 14, serve <14,13>
Go back to depot

6

Go to 11, serve <11,12>
Go back to depot

Decisions

Evolve Heuristic Function to Make Decisions
• Standard GP
• A single tree to calculate heuristic value
• Select the task with the lowest heuristic value

51

Terminal Description

Demand(e) Demand of the task e

Load Remaining load of the vehicle / capacity

Cost(e) Cost of the task e

DepotCost(e) Cost to go back to depot from task e

Satisfied Fraction of satisfied (served) tasks

Last(e) Heuristic value calculated in the last round

Functions

+, -, *, /, max, exp, sin,
angle

Results

• Outperform existing heuristics in uncertain environment

52

Open Issues
• Generalisation
• Dynamic problems (new tasks arrive in real time)
• Multiple vehicles serving simultaneously
• Better meta-algorithms
• Interpretability

53

54

GPHH for Evolving
Heuristics for Memetic

Algorithm in TTP

Traveling Thief Problem
• A new benchmark problem for studying interdependent components
• A combination of TSP and KP

• A set of cities
• Each city has an item
• Each item has a value and a weight
• A thief with capacity and a speed depending on weight carried

• Visit all the cities and collect some items to maximise profit

55

X

i2selected

ci � ↵ · T

56

Traveling Thief Problem

No picking

Pick, slow
down

Pick, slow
down

No picking

No picking

57

No pick

Pick

Pick

No pick

No pick

Traveling Thief Problem
• A solution contains a TSP tour and a picking plan

1

2

3
4

5

6

Tour: (1,5,3,2,4,6,1)
Picking plan: (0,0,1,0,0,1,0)

Memetic Algorithm for TTP

58

Mei, Y., Li, X. and Yao, X., 2014, December. Improving efficiency of heuristics for the large scale traveling thief problem. In
Asia-Pacific Conference on Simulated Evolution and Learning (pp. 631-643). Springer International Publishing.

Very effective especially
for solving large scale TTP

Highly dependent on
heuristic

Item-Picking Heuristic Given Tour
• Different from conventional knapsack heuristics
• The efficiency of an item depends on
• 𝒗𝒂𝒍𝒖𝒆
𝒘𝒆𝒊𝒈𝒉𝒕
• Distance from where it is to the starting city (not to slow down too early)

59

back

𝑐 = 3
𝑤 = 1
𝑑 = 10

𝑐 = 1
𝑤 = 1
𝑑 = 8

𝑐 = 1
𝑤 = 1
𝑑 = 6

𝑐 = 2
𝑤 = 1
𝑑 = 2

𝑐 = 3
𝑤 = 1
𝑑 = 1

Item-Picking Heuristic Given Tour
• A very sophisticated heuristic
• Step 0: All items not picked, current load of the tour is zero;
• Step 1: For each item, calculate the best gain when the tour is empty;
• Step 2: Sort the item in the decreasing order of the best gain;
• Step 3: For each sorted item, if feasible and expected gain under the current

load of the tour is positive, then pick the item and update the current load of
the tour
• Step 4: If all sorted item is scanned, stop; otherwise go to the next sorted

item;

• Complex calculation formulas for the best gain and expected gain
• Evolve using GP

60

Item-Picking Heuristic Given Tour

61

Mei, Y., Li, X., Salim, F. and Yao, X., 2015, May. Heuristic evolution with genetic programming for traveling thief problem. In
2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 2753-2760). IEEE.

Item-Picking Heuristic Given Tour
• Evaluation Model
• Three small TTP instances
• Run MA with the heuristic function once, and get the best solution
• Fitness of the heuristic = the fitness of this best solution

62

Functions

+, -, *, /

Item-Picking Heuristic Given Tour
• Very similar performance as the manually designed heuristic

63

Conclusion
• Genetic Programming has been successfully used as a hyper-heuristic

for automatically designing heuristics
• Very useful in combinatorial optimisation, where heuristics are

usually needed for decision making
• Especially powerful in dynamic environment, in which immediate

response is needed
• Many open issues to be addressed
• Representation
• Evaluation model
• Generalisation
• Interpretability
• …

64

We’re Looking for PhD Students!
• 5-8 fully funded PhD scholarships
• Supported by The Royal Society of NZ’s

Marsden Fund (the most prestigious in NZ,
<8% success rate)
• $23,500-27,500 NZD/year for up to 3 years
• Coolest Little Capital in the world
• Research No. 1 in NZ (2015)
• Closing date: 1 March 2017.

65

We’re Looking for PhD Students!
• Research Areas
• Evolutionary Scheduling, Routing and Combinatorial Optimisation
• Evolutionary Feature Selection and Dimensionality Reduction
• Evolutionary Web Service Composition and Resource Allocation
• Evolutionary Image Analysis and Pattern Recognition
• Evolutionary Machine Learning and Transfer Learning
• Genetic Programming, PSO, Learning Classifier Systems

• More details
• https://ecs.victoria.ac.nz/Groups/ECRG/ResearchAreas#Areas

• Contact
• Dr Yi Mei: yi.mei@ecs.vuw.ac.nz
• Dr. Bing Xue: bing.xue@ecs.vuw.ac.nz
• Prof. Mengjie Zhang: mengjie.zhang@ecs.vuw.ac.nz

66

https://ecs.victoria.ac.nz/Groups/ECRG/ResearchAreas
mailto:yi.mei@ecs.vuw.ac.nz
mailto:bing.xue@ecs.vuw.ac.nz
mailto:mengjie.zhang@ecs.vuw.ac.nz

We’re Looking for PhD Students!

• Requirement
• First class Honours or Masters degree in Computer Science or

Statistics/Operations Research (GPA > 3.5/4.0)
• Research experience/publications in EC, combinatorial optimisation, …
• Strong programming skills in Java, Python, R, …

67

