'E WHARE WANANGA O TE UPOKO O TE TKA A MAUI VICTORIA

‘ UNIVERSITY OF WELLINGTON volutionary
Dt

o
mpu'a"On esearc®

Genetic Programming Hyper-heuristics
for Combinatorial Optimisation

Dr. Yi Mei
yi.mei@ecs.vuw.ac.nz
Evolutionary Computation Research Group

Victoria University of Wellington
IEEE Webinar, Dec 2016

Combinatorial Optimisation

* Important (many real-world applications)
* Hard to solve (usually NP-hard)

[12:00-14:00)

[09:00-11:00) [10:00-12:00)

[1215-13T|/'ﬁ
* Examples: q@
* Traveling Salesman Problem % P AL

* Knapsack Problem

* Vehicle/Arc Routing Problem nmuﬂ ‘ @,
* Timetabling problem
° Map C0|0uring “05{ [méml

Example: Vehicle Routing Problem with Time
Windows

Methods for Combinatorial Optimisation

* Exact methods
* Mathematical programming

* Approximated methods (heuristics)
* (Constructive) Heuristics
» Search-based Heuristics (Meta-heuristics)
* Hyper-heuristics

(Constructive)

Heuristics
Mathematical

Programming

Search-based
(Meta-) Heuristics

Hyper-heuristics

Mathematical Programming ™ "&" %"

s.t. he—si+s;>0 Ve={ij}leE

he+si—sj>0 Ve={ij}eE

* Guarantee Optimality
* Very mathematical demanding

—he+S,'+SjZO Ve={i,jleE
si—fe>0 Ve={ijleE
e Can be very slow S—fo>0 Ve={ij)cE

S,'+Sj—fe <1 Ve={ij}eE

* Not flexible in stochastic/dynamic
environment S (he+fo)-5:=0 VieV

e e 6({ip

* Still need some heuristics (e.g. for branching) = he+fo<1 veer

eckE
So=0
hef.€{0,1} VeeE
s;ie[0,1] Vvie V\{0}
KeZy

7€[0,1)

(Constructive) Heuristics

* Incrementally construct a solution
from scratch
e Easy to understand and implement
* Fast
* Reasonably good solutions
e Cannot guarantee optimality

4)

Randomly pick a node
as the starting point of
the tour, and set all
nodes to unvisited

Append the nearest
neighbour to the tour,
and set it to visited

All nodes No
visited?

\,

Yes

Example: Nearest Neighbor
Heuristic for TSP Return

the tour

Search-based Heuristics (Meta-heuristics)

* [teratively improve one or more solutions
* Produce high-quality solutions
* Faster than mathematical programming
* Can embed domain knowledge
* Can combine with constructive heuristics (initial solutions)
* Not flexible in stochastic/dynamic environment
* Not scalable well to large problem size
Neighborhood

Simulated Tabu
Annealing Search
Search
Guided Local Genetic
Search Algorithms PSO

Memetic
Algorithms

Variable

Ant Colony
System

Hyper-heuristics

* Search forather than solutions
* Fast (Response immediately in dynamic environment)
* Flexible (Solutions can be applied to a range of problem instances)

* Scalable to large problems
* Can discover new knowledge for problem solving

A typical example: Genetic Programming Hyper-Heuristic (GPHH) for
evolving dispatching rules for job shop scheduling

Branke, J., Nguyen, S., Pickardt, CW. and Zhang, M., 2016. Automated design of production scheduling heuristics: a review.
IEEE Transactions on Evolutionary Computation, 20(1), pp.110-124.

Genetic Programming

* Evolve a population of computer programs

* Crossover and mutation operators according to representation (e.g.
tree, graph)

Initialise a population of GP
programs

Return the best
GP program

[Evaluate the GP programs]

\

Generate a new population using
GP crossover and mutation

operators

Genetic Programming as Hyper-Heuristic

* Meta-algorithms
* An algorithm to generate a solution given a problem instance

Meta-algorithm

Component
K evolved by GP /

Problem
instance

Genetic Programming as Hyper-Heuristic

P
Determine the meta-algorithm,

and the component to be
evolved by GP

Initialise a population of GP Y
programs Initialise a population of GP }

programs, each representing a
heuristic
@ { Return the best } l
GP program
Return the best
GP program
[Evaluate the GP programs]
Evaluate the GP programs by
applying the corresponding
meta-algorithm to the training
v instances
Generate a new population using
GP crossover and mutation L)
operators Generate a new population using

GP crossover and mutation
operators

10

Issues for GPHH

* How to represent a heuristic (GP program)?
* Tree?
* Graph?
* Sequence?

 How to evaluate a heuristic?

* Performance on a set of problem instances?
* Generalisation? Performance on unseen instances?

11

Representation of Heuristics

* Example: Constructive heuristic for TSP Meta-algorithm
e+ Step 0: S = (), all nodes unvisited;)
 Step 1: Select an unvisited node v* based on some priority function, S =

(S, v°);
\° Step 2: If all nodes visited, return S, otherwise, go back to Step 1;)
™
~

12

Representation of Heuristics

 Calculate the priority for all the unvisited node using the priority
function h(v; ©), then select the node with the highest priority

* Nearest neighbour heuristic: h(v; 0) = —d (v, S)

* For evolving constructive heuristics for TSP using GP, one can
represent the priority functions as syntax trees

* Terminals: state features (e.g. location, distance)
* Functions: +, -, *, /, min, may, ... ‘/E>\

X y X Z

x+y)" (x-2)

13

Representation of Heuristics

* Evolve the priority trees using GP crossover/mutation

=
arents spring
@/@ ©. (+] () P Offspri
@é 94 8@ e iy
s & =

Randomly Generated

>< Sub-tree
© =
®E® ®
Ve

9 GP mutation

GP crossover

Poli, R., Langdon, W.B., McPhee, N.F. and Koza, J.R., 2008. A field guide to genetic programming.

14

Evaluation of Heuristics

* A heuristic m produces a solution given a problem instance
 Performance on an instance i: perf(m, i) = objective value of the
produced solution to the instance i

* Overall performance on a set of instances I: perf (m,I) = mean of
the normalised objective values of the produced solutions to each

instance i € [
* Normalise by the lower bound
* Normalise by the performance of reference heuristic/method

e But a heuristic perform well on the training instance(s) may not
perform well on unseen instances (overfitting)

* Generalisation is an important issue (performance on unseen
instances)

15

Evaluation of Heuristics

 Various strategies to improve generalisation
* Use comprehensive training instances

Use small training set + change training set after each generation (similar to
stochastic gradient descent/mini-batch in machine learning)

Regularisation: restrict the maximal depth of GP trees
Restrict the structure of GP trees (e.g. strongly-typed GP, grammar-based GP)

16

In This Talk...

* Evolve dispatching rules for job shop scheduling

* Evolve heuristics for arc routing problem
* Evolve heuristics for memetic algorithm in traveling thief problem

GPHH for Evolving

Dispatching Rules for
Job Shop Scheduling

Job Shop Scheduling

* Process a set of jobs with a set of machines

* Each job has a sequence of operations, each processed by a certain
machine

* Each job has arrival time, due date, weight, etc
e Each operation has a processing time

* Objective: minimise makespan/flowtime/tardiness

e Constraint

* Each machine can process at most one operation at a time
* An operation cannot start until its preceding operations have completed

19

Job Shop Scheduling

[T

* Car manufacturing EngineHoist *
. . . Job1 [i T WheelStation
* 3 machines (Engine Hoist, Wheel v ¥ L. ey
Station, Inspector) Job2 [Z]~ .
. . . /
* 2 jobs, each with 3 operations /
o 1) AddEng|ne <' D (- — — — — = Inspector
e 2) AddWheel e %%
* 3) Inspect o ps -—
—ili
EngineHoist ‘ AddEngine1 ‘ AddEngine2]
WheelStation ‘ AddWheels1
Inspector
0 10 20 30 40 50 60 70 8 90 100 110 120

20

Dynamic Job Shop Scheduling

* Unpredicted events (e.g. new job arrivals) occur during the execution
of the schedule

* Immediate response is needed

 Solution optimisation methods are usually too slow to respond
effectively

EngineHoist ‘ AddEngine1 = 1 AddEngine2 ’
WheelStation | Adawneerst
Inspector :

0 10 20 : 30 40 50 60 70 80 90 100 110 120
Job3 [AddEngine3 -> AddWheels3 -> Inspect3] arrives

21

Dispatching Rule

* Whenever a machine becomes idle and its queue is not empty
 Calculate the priority of the operations waiting in the queue
 Select the most prior operation to process next

SPT rule:
Priority = - ProcTime

EngineHoist AddEngine1

| :’ \:
WheelStation | ‘ AddEngine2 \ J

: E - |
Inspector ! ‘ AddWheels1 ’

l 1

140

22

Dispatching Rule

* Many rules have been designed manually (FCFS, SPT, EDD, PT+WINQ,
2PT+WINQ+NPT, WATGC, ...)

e Can handle dynamic JSS very well
* Quick response
* Good scalability (work well for huge problems)
* Flexibility (can apply to a range of JSS instances)

* Manually designing effective dispatching rules is very challenging
* Many interdependent factors (features) to consider

 Evolve dispatching rules using GPHH

23

Evolve Dispatching Rules by GPHH

* Meta-algorithm: discrete event simulation
 Start from time 0, empty schedule, initial jobs waiting in their machines
* New jobs may arrive in real time (e.g. Poisson process)

* As soon as a machine is idle and there are jobs waiting in its queue, select a
job from its queue to be processed next using the dispatching rule

 Stop if all jobs completed

EngineHoist AddEngine1 AddEngine3 { AddEngine2] SPT rule
I [AddEnginet--------f-----------------------oo—- {
| ' ; h
WheelStation | AddWheels1 [AddWheels3 AddWheels2 J
: ;: l] l UV VITCTTS T : J I
| ¢ W
Inspector | :{ Add Inspect?

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

24

Evolve Dispatching Rules by GPHH

* Objectives

* Makespan: max (;
. i 1 N
* Mean flowtime: ﬁZj:l(Cj —a;)
* Mean weighted tardiness: %Z?Ll w;T;, where T; = max{C; — d;, 0}

Fitness

Dispatching)
rule

Job shop
instance/simulation

Objective value

Representation

* Single priority tree for all the machines

Q OPT+WINQ+NPT

SPT rule

[0] [ProcTime]

Representation

* Machine-specific priority trees

e Effective especially when machines have different scenarios
* Unbalanced job shop

 Two machines with different utilisations

<. Machine1? >
Yes "o~ <" No

Machine 2

Machine 1

Hunt, R., Johnston, M. and Zhang, M., 2014, July. Evolving machine-specific dispatching rules for a two-machine job shop
using genetic programming. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 618-625). IEEE.

27

Representation

* Machine-specific priority trees

e Effective especially when machines have different scenarios
* Unbalanced job shop

* Bottleneck machines vs non-bottleneck machines

.....................................

3 \

Bottleneck Priority rule for Priority rule for non-
estimation bottleneck machine bottleneck machine

Jakobovi¢, D. and Budin, L., 2006, April. Dynamic scheduling with genetic programming. In European Conference on Genetic
Programming (pp. 73-84). Springer Berlin Heidelberg.

28

Representation

* Decision tree-like representation
* Allow idle machines to wait some time even with non-empty queue

IN |

Dispatch | Dispatch)
WR 120% | 10.221 | SPT | 10.078 FIFO |

If (workload ratio is less than or equal to 20%)
Use the SPT rule with non-delay factor of 0.221

Else
Use the FIFO rule with non-delay factor of 0.078

Nguyen, S., Zhang, M., Johnston, M. and Tan, K.C., 2013. A computational study of representations in genetic programming
to evolve dispatching rules for the job shop scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5),
pp.621-639.

29

Representation

* Dimensionality-Aware GP
 Different attributes have different dimensions (units: time, count, weight, ...)
* Keep semantic correctness with respect to dimensionality

Semantically Semantically
incorrect solution correct solution

() (1)
() g gy ()
0‘\9 (-) &)
meaningless
)) (@) ()

Purasevi¢, M., Jakobovi¢, D. and KneZevi¢, K., 2016. Adaptive scheduling on unrelated machines with genetic programming.
Applied Soft Computing, 48, pp.419-430.

30

Feature Selection for GP Terminals

* Many features: huge search space

* Some features are redundant/irrelevant (e.g. due date is irrelevant
when minimising makespan)

 Select a subset of important features

* Feature selection is challenging as it depends on
* Job shop scenario (utilisation level, due date factor, ...)
* Objective (flowtime, tardiness, ...)
* Complex interaction between features

* Learn the importance of features

31

Feature Selection for GP Terminals

* |deally, we only need the features that contribute to the optimal
individual

* However, the optimal individual is unknown

* Approximation

* If a feature contributes to a better individual, then it is more likely to
contribute to the optimal individual

* If a feature contributes to more individuals, then it is more likely to
contribute to the optimal individual

32

Feature Selection for GP Terminals

* Use the number of appearances to measure the contribution of a
feature to an individual

e Update the importance estimation during GP process

P
count;;

n

* During mutation, the probability of choosing a feature when

generating the new sub-tree depends on its importance

w

L 7
Pi = n A\
Zk=1 Wy,

w; — w; + X filness,;

Riley, M., Mei, Y. and Zhang, M., 2016, November. Improving job shop dispatching rules via terminal weighting and adaptive
mutation in genetic programming. In Evolutionary Computation (CEC), 2016 IEEE Congress on (pp. 3362-3369). |EEE.

33

Feature Selection for GP Terminals

* Experiments
» 8 scenarios (4 utilisation levels X 2 operation settings)
e Utilisation: 0.8, 0.85, 0.9, 0.95
* Ops:
* Missing: uniform from 2 to the number of machines
* Full: equal to the number of machines

 Avalues: 1, 2,5, 10
e 2 mutation rates: 0.1 and 0.3

Feature Selection for GP Terminals

w o b -1 (€001
b 11 F(ro'ol)
_ poennees L[] 0e o
3 [[T 1tto9 3
%., oofonannn- _ _ *.; Am.o% %,
< = [T FToeT g
= e B B X)
b T4 FGo'
[_H_HT - aul|eseg
& 8 8 8§ 3
-~ - ©o o o
s _[}---4 F(€°0°01)
_ e M I S A o (N X1 D I
E et]-1r€0e 2
Y 1T 1+ 009 @
= coee o b []-4 (€0 | E
P -
@ S BRI A CUYV-]
= - T4 P10y
oeeeesees [1]+ [ouneseg
+ a4 o ® ©
@ o & a2 9
- - - o o
we o [[}-4 =+ (€0°0H
b [} F(Gro'on)
_ peseeees 1] aomv -
) I (T
-uali oom fo---- ._ _ --{ | AmONv Ow,
o LI [00a g
b T Hp(eoy)
I I ()
foemoenn _H_HT - au||eseqg
N 9 @ ©
S & @ 9
- - o o
o t-{]]--1 - F(€0°01)
- T4 F(eoton)
\m,, e pE0'e) D
= |- el T 1 b109) @
m come b]-1 | (€0%) E
- L 1] 1 [(0e -
L) gy 2
S A [T} E€0) o
- T4 FGeo'h)
beeeeees {_ T+ |auneseg
+ 8 o @® ©
S o] 2 @
~— — -~ o o

-(e0'04)
-(10'0L)
- - []---1 F(€0G) _
b L N A
T oo)
T N F(r0
b T F+ F(e0'))
S T+ Qo)
........... [[]---1 Fauleseg on
8 8 &8 & § -
~— o o o o __
o b -(eool) O
........ {1 -1 oo LM
e b] }--1p(e09) <
o I I (T
. el IR -(€'0'2) _ -
— T T F(10e m
b---- T} -0’ 2
poeneees = F(10°1) a
......... [L auljaseg Lm
EEERE S
-~ o o O o o
w ot T}---1 F(€0'01)
beseeees T] F(rood)
N | aomv
[SRTTSY I I T (S
- o [0 | MO
T [T F(roe $—
L[]+ Feoy O
poennnes [T 1+ o o\
.............. [T J--+ euleseg
EEREE !
- ©o © o o ~<
poennens [1]+ r(eo‘or)
I [T F--+1 Qoo
oo b }----1F(€0%)
poeeeooo - [[|-+ t(0g
R [T+ F(roe
boeneees [1] p(eo')
pennmnne- { Tt Qo
SRR [T }--1 feuleseg

35

Feature Selection for GP Terminals

e Using number of appearances may be misleading

(a/b) + ((c —c) xd) = a/b Redundant

36

But feature c appears twice, which is more than a and b.

Feature Selection for GP Terminals

A new contribution measure
contribution(feature,tree) =

fit(tree|feature = 1) — fit(tree)

Fit(tree) = 0.9
Fit(tree|b=1) = 1.1
Contribution(b) = 0.2

Contribution(c) =0
Contribution(d) =0

Yi Mei, Mengjie Zhang, Su Nguyen, "Feature Selection in Evolving Job Shop Dispatching Rules with Genetic Programming,"

Genetic and Evolutionary Computation Conference (GECCO), Denver, USA, 2016.
37

Feature Selection for GP Terminals

 Step 1: Conduct 30 pilot GP runs, collect 30 best individuals
 Step 2: Calculate contribution of each feature to each individual
 Step 3: Select a feature if it contributes to more than 15 individuals

Notation Description
NOW The current time. . . .
| 5 Processing time of the operation. Min WEIghtEd tardiness
B e by Inverse of the processing time.
Processing time of the next operation.
ORT Ready time of the operation.
MRT Ready/Idle time of the machine.
NMRT Ready time of the next machine.
%fi Work in the current queue.
l IN Work in the next queue.
NOIQ Number of operations in the current queue.
NOIN Number of operations in next queue.
WKR Work remaining (including the current operation).
NOR Number of operations remaining.
FDD Flow due date of the operation.
DD Due date of the job.

W

Weight of the job. -

Feature Selection for GP Terminals

Min. Weighted Tardinessl

98
o 96
< 94
T 92
3o 90
= 88
o 86
>
< 84
82

m All Attributes
W Selected Attributes

1 2 3 4 5 6 7 8
Scenario

39

Evaluation Model

e Standard
A set of static instances (normalised by lower bound/reference rule)
* Dynamic discrete event simulation(s)
* 10 machines, 2500 jobs, 2~10 operations per job

e 500 warm-up jobs for steady-state performance
» Different utilisation levels (0.85, 0.9, 0.95) and due date factors (3, 4, 5)

* Change the random seed of the simulation(s) at each generation
* Much better generalisation
* Much faster (only one replication per generation)

Hildebrandt, T., Heger, J. and Scholz-Reiter, B., 2010, July. Towards improved dispatching rules for complex shop floor
scenarios: a genetic programming approach. In Proceedings of the 12th annual conference on Genetic and evolutionary

computation (pp. 257-264). ACM.

40

Surrogate Evaluation Models

Current population

Crossover/mutation

Best surrogate
fitness

Evaluate using surrogate

Full Surrogate

evaluation model

41

Surrogate Evaluation Models

* Smaller job shop simulation

26 bbb S S ®
No. Machines 10 5 v : P e §
g 20 _, ,.
No. Jobs 5000 500 2 s : 2 e ' o
w 15 _,..,. ,, -
c : : L
No. Warmup Jobs 500 100 O 200 @ G
E .. . ‘ ‘
Min Ops 2 2 et -
ol -l L. . ;
0 5 10 15 20 25 30
Max Ops 14 7

mean tardiness of simplified model

Nguyen, S., Zhang, M. and Tan, K.C., Surrogate-Assisted Genetic Programming With Simplified Models for Automated Design
of Dispatching Rules. IEEE Transactions on Cybernetics, in press, DOI 10.1109/TCYB.2016.2562674.

42

Surrogate Evaluation Models

* Phenotypic characterisation
* A set of decision situations and a reference rule

* For each decision situation, measure the difference between the reference

rule and the characterised rule
* Characterised by a decision vector

decision|attribute set s| ranking by |ranking by|decision
situation[s, s, s;|reference rule| other rule|vector d
1 3 4 8 1 2
1 |7 6 15| <& | 1 2
2 23 17 1 2 2
2 8 9 3 3 f 3
2 6 4 6 1< = >
k 7 3 9 2 — 2
k |4 8 6| <a_ | 1 1

Hildebrandt, T. and Branke, J., 2015. On using surrogates with genetic programming. Evolutionary computation, 23(3),

pp.343-367.

Surrogate Evaluation Models

* If two rules have similar phenotypic characterisation, i.e. decision
vectors, then they tend to have similar fitness values

» A <decision vector, fitness> database (the fully evaluated individuals
in the last 2 generations)

d, d, .. d |fitness
3

1456

rule,:| 2 w1
1 2 ... 2| 1123

rule,:

rule.;l]1 3 .. 1] 1293

* Nearest neighbour regression — set the approximated fitness to the
fitness of the closest rule in the database

Surrogate vs Reusability

* In static case, we aim to train dispatching rules using small instances
(surrogate), which can be reused on large instances

- . numjobs
* Such reusability strongly relates to ratio = e achines
| — 106 .
120 |} R - ot i ’if 104 1)
- /// "t .
LT L °
< 1154 i ’ ® 102
g %\% ; H g Corr =0.92
= 1101 = 10 S
: 98 - o o.o .
105 | ..8::0.0!0. o e
: %8 e
-4 -3 2 1 0 1 2 0 15

5 I
|ratio(lyain) — ratlo(ltesgl

Yi Mei, Mengjie Zhang, "A Comprehensive Analysis on Reusability of GP-Evolved Job Shop Dispatching Rules," IEEE World
Congress in Computational Intelligence (WCCI), Vancouver, Canada, 2016.

raﬁo(ltrain) - ratio(ltest)

GPHH for Evolving

Heuristics for Arc
Routing Problem

46

Arc Routing Problem

* A Graph
* A set of arcs to be served (tasks)
* A special node (depot)

* Arc

 Demand N '
* Serving cost 7,/ AN
 Deadheading cost E = 4

e A fleet of vehicles

J Capacity W under-2T
m 0--1TC

0-1%C

1-2T

over2T

Arc Routing Problem

e A SOIUtion (a) all tours

* A set of routes to serve the tasksm.c:; " :
------ truc e
Jtruck 3 ’/‘y“

* Objective
* Minimize the total cost

* Constraints o 1.
* Each task is served exactly once Ty TS *'

* Each vehicle starts and ends at the ===~ ks depot % {
depot — OB S

* The total demand served by each ~ ——? e "’V/
vehicle cannot exceed its capacity truck 10 Y A

w truck 11

Developmental CARP Solving

* Asingle vehicle, but can go back to refill

* Meta-algorithm
» Step 0: A vehicle at the depot, all tasks unserved;

» Step 1: Select an unserved task by the heuristic function;

» Step 2: If the vehicle can serve the task without violating the capacity
constraint, then go; otherwise go back to the depot to refill;

 Step 3: If all the tasks have been served, then go back to depot and stop;
otherwise go to Step 1;

Weise, T., Devert, A. and Tang, K., 2012, July. A developmental solution to (dynamic) capacitated arc routing problems using
genetic programming. In Proceedings of the 14th annual conference on Genetic and evolutionary computation (pp. 831-838).

ACM.

49

Developmental CARP Solving

Decisions
Go to 3, serve <3,2>

Goto 1, serve<1,7>
Goto 9, serve <9,10>
Go back to depot

Go to 4, serve <4,5>

Go to 6, serve <6,8>

Go to 14, serve <14,13>

Go back to depot
Goto 11, serve <11,12>

Go back to depot

50

Evolve Heuristic Function to Make Decisions

e Standard GP

* Asingle tree to calculate heuristic value
* Select the task with the lowest heuristic value

Demand(e) Demand of the task e

Load Remaining load of the vehicle / capacity m

+, -, *, /, max, exp, sin,

Cost(e) Cost of the task e
angle
DepotCost(e) Cost to go back to depot from task e
Satisfied Fraction of satisfied (served) tasks

Last(e) Heuristic value calculated in the last round

51

Results

0.8 ;
0.6 1

0.4 1

#dc.l 1 2 3 4 5 6 7 #del 1 2 3 4 5 6 7
Hcases 25 271 593 595 570 302 136 #cases 66 214 198 192 186 181 175
#runs 175 1897 4151 4165 3990 2114 952 Hruns 462 1498 1386 1344 1302 1267 1225

e Outperform existing heuristics in uncertain environment

52

Open Issues

* Generalisation
* Dynamic problems (new tasks arrive in real time)

* Multiple vehicles serving simultaneously
* Better meta-algorithms

* Interpretability

GPHH for Evolving

Heuristics for Memetic
Algorithm in TTP

54

Traveling Thief Problem

* A new benchmark problem for studying interdependent components
* A combination of TSP and KP

* A set of cities
e Each city has an item
* Each item has a value and a weight

* A thief with capacity and a speed depending on weight carried

* Visit all the cities and collect some items to maximise profit

Z ci —a-1T

1€selected

55

56

Traveling Thief Problem

* A solution contains a TSP tour and a picking plan

Tour: (1,5,3,2,4,6,1)
&) Picking plan: (0,0,1,0,0,1,0)

57

Memetic Algorithm for TTP

Initialise a population of
(tour, picking plan)

Yes l
Return best _)
[solution] @ Very effective especially

No for solving large scale TTP

[Parent selection J

v

LCFOSSOVGI’ for tour

Highly dependent on
] heuristic

and picking plan

__

Two-stage local search

Local search for Improve picking plan
improving tour length under the fixed tour

—_————————
N —————

Mei, Y., Li, X. and Yao, X., 2014, December. Improving efficiency of heuristics for the large scale traveling thief problem. In
Asia-Pacific Conference on Simulated Evolution and Learning (pp. 631-643). Springer International Publishing.

58

ltem-Picking Heuristic Given Tour

* Different from conventional knapsack heuristics
* The efficiency of an item depends on

value
[]

weight
* Distance from where it is to the starting city (not to slow down too early)

X X DN

% “w @ &
O O O
d=10 d=38 d=

ltem-Picking Heuristic Given Tour

* A very sophisticated heuristic
» Step 0: All items not picked, current load of the tour is zero;
 Step 1: For each item, calculate the best gain when the tour is empty;
e Step 2: Sort the item in the decreasing order of the best gain;

» Step 3: For each sorted item, if feasible and expected gain under the current
load of the tour is positive, then pick the item and update the current load of
the tour

» Step 4: If all sorted item is scanned, stop; otherwise go to the next sorted
item;

* Complex calculation formulas for the best gain and expected gain

* Evolve using GP

60

ltem-Picking Heuristic Given Tour

GAIN Meta-algorithm PICK Meta-algorithm
4 N\
Initialise an empty picking Initialise an empty picking
plan plan
\§ J
v A
e N e N
Calculate heuristic value for Calculate the best gain of each
each item by h(item) item when the tour is empty
(. J - J
\J \
e N e A
Sort the items based on For each sorted item, calculate
heuristic value the heuristic value h(item)
(. J (. J
\J A
e N e N
Pick the items in order until Sort the items based on best
no item can be picked gain
. J .)
A
e N
Pick the item if h(item) > 0
. J/

Mei, Y., Li, X., Salim, F. and Yao, X., 2015, May. Heuristic evolution with genetic programming for traveling thief problem. In
2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 2753-2760). IEEE.

ltem-Picking Heuristic Given Tour

 Evaluation Model
* Three small TTP instances
* Run MA with the heuristic function once, and get the best solution
* Fitness of the heuristic = the fitness of this best solution

Terminal Description

profit Profit of the item

weight Weight of the item '
bdist Distance of the location of the item to the end of the tour Functions
Q The capacity of the knapsack

L The total length of the tour +- %
R The rent ratio of the knapsack

v The coefficient defined by Eq. (2)

Umax The maximal speed

w The total weight of the items selected so far

ltem-Picking Heuristic Given Tour

* Very similar performance as the manually designed heuristic

Name

n

m TSMA

TSMA-GAIN TSMA-PICK

brd14051
d15112
d18512

pla33810
rl11849

usai13509

14051
15112
18512
33810
11849
13509

140500 2.66e+7(2.07e+5
151110 2.85e+7(5.35e+5
185110 3.07e+7(2.73e+5
338090 6.34e+7(4.59e+5
118480 1.97e+7(8.29e+4
135080 2.92e+7(2.60e+5

)
)
)
)
)
)

2.66e+7(2.59e+5
2.83e+7(3.40e+5
3.07e+7(3.47e+5

) 2.66e+7(3.41e+5

()

()
6.32e+7(6.87e+5)

()

()

)
2.84e+7(4.75€+5)
3.06e+7(4.95€+5)
6.33e+7(5.11e+5)

1.97e+7(9.06e+4 ()
2.92¢+7(2.55e+5 ()

1.97e+7(1.04e+5
2.92e+7(1.70e+5

63

Conclusion

* Genetic Programming has been successfully used as a hyper-heuristic
for automatically designing heuristics

* VVery useful in combinatorial optimisation, where heuristics are
usually needed for decision making

* Especially powerful in dynamic environment, in which immediate
response is needed

* Many open issues to be addressed
* Representation

Evaluation model

Generalisation

Interpretability

We’re Looking for PhD Students!

* 5-8 fully funded PhD scholarships

» Supported by The Royal Society of NZ’s
Marsden Fund (the most prestigious in NZ, FESSSEITE S
<8% success rate)

* $23,500-27,500 NZD/year for up to 3 years
* Coolest Little Capital in the world

e Research No. 1in NZ (2015)

* Closing date: 1 March 2017.

TE WHARE WANANGA O TE UPOKO O TE TKA A MAUI

B VICTORIA

65

We’re Looking for PhD Students!

* Research Areas
* Evolutionary Scheduling, Routing and Combinatorial Optimisation
* Evolutionary Feature Selection and Dimensionality Reduction
* Evolutionary Web Service Composition and Resource Allocation
* Evolutionary Image Analysis and Pattern Recognition
* Evolutionary Machine Learning and Transfer Learning
e Genetic Programming, PSO, Learning Classifier Systems

 More details
* https://ecs.victoria.ac.nz/Groups/ECRG/ResearchAreas#Areas

* Contact
* DrYi Mei: yi.mei@ecs.vuw.ac.nz
* Dr. Bing Xue: bing.xue@ecs.vuw.ac.nz
* Prof. Mengjie Zhang: mengjie.zhang@ecs.vuw.ac.nz

66

https://ecs.victoria.ac.nz/Groups/ECRG/ResearchAreas
mailto:yi.mei@ecs.vuw.ac.nz
mailto:bing.xue@ecs.vuw.ac.nz
mailto:mengjie.zhang@ecs.vuw.ac.nz

We’re Looking for PhD Students!

* Requirement

* First class Honours or Masters degree in Computer Science or
Statistics/Operations Research (GPA > 3.5/4.0)

* Research experience/publications in EC, combinatorial optimisation, ...
e Strong programming skills in Java, Python, R, ...

