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Why Interpretability in Al

* Early logical and symbolic Al systems
* Expert systems, manually design the logic and rules
* Easy to understand and explain
* Not effective enough, brittle against real-world complex problems

* Recent Al successes
* Machine learning, deep learning, automatically learn relationships

* High performance, but too complex and opaque
THIS 1S YOUR MACHINE LEARNING SYSTETT?

YOUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAl) program. Al Magazine, 40(2), 44-58.

Al Fﬁ‘gazine

DARPA'’s Explainable
Artificial Intelligence Program

David Gunning, David W. Aha




Why Interpretability in Al

* |dentify “Clever Hans” Predictors
* Enhance Trust and Confidence from Users

* Provide New Insights (AlphaGo)

. . (a) Husky classified as wolf (b) Explanation
° Leg|5|at|0n Ribeiro et al. 2016

* EU’s General Data Protection Regulation (GDPR)
requires the ML model to be able to be explained

Samek, W., & Miiller, K. R. (2019). Towards explainable artificial intelligence. In Explainable Al: interpreting, explaining and visualizing deep
learning (pp. 5-22). Springer, Cham.



Learning Performance vs Explainability

* There is a trade-off between performance and explainability
* Deep learning: very good performance, but hard to explain
* Decision tree: relatively easy to explain, but not as effective

Learning Techniques

Neural Nets Graphical

Models

Deep
Learning

Bayesian
Belief Nets

o
= e
_/.

Explainability

Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAl) program. Al Magazine, 40(2), 44-58.
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Improve the Trade-Off by XAl

* Deep explanation: Modify DL methods to learn more explainable features or representations
* Interpretable Models: Techniques to learn more structured, interpretable or causal models

* Model Induction: Techniques that infer an approximate explainable model for a complex model,
analysing the input-output behaviour of a black box model

New XAl approaches

Learning Techniques

Neural Nets

Deep
Learning

Bayesian
Belief Nets

Yerformance

\

Explainability

Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAl) program. Al Magazine, 40(2), 44-58. 7



XAl Concept

* Current Al vs XAl

* XAl enables users to understand the system’s overall strengths and weaknesses, how it will
behave in future, perhaps correct its mistakes

Today

“EET.H * Why did you do that?
DEEDE. * Why not something else?
Smll WE Learning This is a cat + When do you succeed?

===g Process M (p=.93) « When do you fail?
iﬁﬂaﬂ . * When can | trust you?
[<{nlerfity brfomofi » How do | correct an error?
Training Learned Output User with
Data Function a Task
Tomorrow
— * | understand why
e This is a cat: « | understand why not
New ¢i / %) l sithas fur, whiskers, « | know when you'll succeed
Learning [ and claws. - I know when you'll fail
1 ' l ‘ l * l ' «It has this feature: Y
Process /4 ‘ ‘ l i ‘ ' ' 3 * | know when to trust you
] ; * | know why you erred
Training Explainable  Explanation User with
Data Model Interface a Task

Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAl) program. Al Magazine, 40(2), 44-58.



Techniques for Interpretable ML

* Intrinsic interpretability (Global and Local)
* Constructing self-explanatory models, such as decision tree, rule-based model, linear model, ...

* Post-hoc interpretability (Global and Local)

* Creating a second (interpretable) model to provide explanations for an existing (black-box) model
* Global interpretability: understand the overall model structure/behaviour

* Local interpretability: understand how/why the model makes one prediction/decision

Interpretable
ML

Intrinsic Post-hoc
Interpretablllty Interpretablllty

Global LocaI Global Local
Interpretability Interpretability Interpretability Interpretability

Model-
Agnostic

Model-Specific

Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77.



Intrinsic Global Interpretability

* Train self-explanatory models directly
* Linear models

Rule-based systems

Decision trees

Genetic programs (Syntax trees/graphs, ...)

Add interpretability constraints

* Number of features used in the model
* The used features must have monotonic relations with the prediction

* Trade-off between accuracy and interpretability
Multi-objective training

* Accuracy and interpretability metrics

* Number of features used

* Model complexity

Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77. 10



Intrinsic Local Interpretability

* Example: Employ attention mechanism in RNNs
* Learn to describe the content of images: caption generation

* Visualise the attention weight matrix for each individual prediction

A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

I

A giraffe standing in a forest with

A little girl sitting on a bed with

a teddy bear. in the water. trees in the background.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption 11

generation with visual attention. In International conference on machine learning (pp. 2048-2057). PMLR.



Intrinsic Local Interpretability

 The attention can tell which mistakes the model made

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption 12

generation with visual attention. In International conference on machine learning (pp. 2048-2057). PMLR.



Post-Hoc Interpretability

* Model-Specific
* Designed for some specific model, e.g., deep learning

* Model-Agnostic

* Can interpret/explain ANY model
* Model simplification

* Feature relevance/importance

* Visualisation



Post-Hoc Global Interpretability

* DNN-specific explanation
 Visualisation for class labels: generate a fake image I

« ] =arg max S.(1) — /1| |1 |§, where S.(I) is the score of class ¢ by the classification layer

washing machine computer keyboard kit fox
goose ostrich limousine
Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency 14

maps. arXiv preprint arXiv:1312.6034.



Post-Hoc Global Interpretability

* Use the input-output data predicted by the black-box model

* Train a simple model (e.g., decision tree, rules)

* Model Agnostic

* E.g., Use a decision tree to approximate

* Can get promising accuracy — even better than the baseline

» Cart pole policy explained by the decision tree:
* To the right if (pole velocity 2 -0.286) A (pole angle = -0.071)

Description of Problem Instance Absolute Relative
Dataset Task Samples Features Model f T Thase T Thase
breast cancer [31] classification 569 32 random forest | 0.966 0.942 0.934 | 0.957 0.945
student grade [9] regression 382 33 random forest | 4.47 4.70 510 | 0.40 0.64
wine origin [14]  classification 178 13 random forest | 0.981 0.925 0.890 | 0.938 0.890
wine origin [14]  classification 178 13 neural net 0.795 0.755 0.751 | 0.913 0.905
cartpole [5] reinforcement learning 100 4 control policy | 200.0 190.0 35.6 | 86.8% 83.8%

Bastani, O., Kim, C., & Bastani, H. (2017). Interpretability via model extraction. arXiv preprint arXiv:1706.09773.

15



Post-Hoc Global Interpretability

* Permutation feature importance (Model Agnostic)
1. Calculate the baseline accuracy of the model on test dataset
2. Permute the values of a feature on the test set, calculate the new accuracy on the modified dataset
3. Repeat the permutation for all features, set the feature importance score as the accuracy reduction

max_concave_points
max_symmetry
mean_fractal_dim
std_concave_points
mean_smoothness
mean_concave_points
mean_perimeter
std_smoothness
max_area
mean_symmetry
max_compactness
std_perimeter

e Wisconsin breast cancer data «d_concaviy

mean_texture

[ ] std_texture
Random forest g
max_perimeter

max_radius

std_radius

max_smoothness

mean_radius

mean_area

mean_compactness

std_compactness

mean_concavity

std_symmetry

max_fractal_dim

std_fractal_dim

std_area

max_concavity

-

-0.005 0000 0005 0010 0015 0020 0025 0030
Permutation feature importance training set (decrease in AUC)

Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77.
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Post-Hoc Local Interpretability

* DNN-specific explanation
e Simplify image:
* Segment the image, and remove each component until it is misclassified by the CNN

-
D ”wm'
) 1
9 W il

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2014). Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856.

17



global average pooling

1 oy*
= 722
b —~—

gradients via backprop

Post-Hoc Local Interpretability

* DNN-specific explanation
* Grad-CAM: use gradient

«

0

LGraa.cam = ReLU Z aj A"
k.
N————r

linear combination

i €—— Gradients A £ ¢ |Tiger Cat
E i _ Image Classification
____________________ ¥ > e 3
fom 2
A LS sl e FC Layers Y
uided Backpropagation
- % propag ; ' (or)
2 Rectified Conv i " _'A'— ’
Guided Backprop Feature Maps P
‘ ’ ':\‘> é i A cat lying on Image Captioning
q Any RNN/LSTH the g)r/ougnd
? 7 Task-specific| <
e k) Network [----
oS (or)
Guided Grad-CAM
Is there a cat? Visual
Ciaotion RNN/LSTM Question Answering
€ |Yes
y (or)
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via 18

gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).



Post-Hoc Local Interpretability

* DNN-specific explanation
e Grad-CAM: show the important regions clearly

Guided Backprop Grad-CAM Guided Grad-CAM

What is the man doing? What is the she holding? Baseball bat

H

=

] n

-
What color is the firehydrant? ‘

3

£ What is that? Elephant What is that?

3

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via 19

gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).



Post-Hoc Local Interpretability

* DNN-specific explanation
* Learn a mask

blur constant noise

* Loss function
* Regularisation (simply masks)

 Classification drop significantly with the mask

m(u)zo(u) + (1 —m(u))po,  constant,
m* = argmin /\” 1 — m”l +4- fc((I)((EO; m)) [®(z0;m)](u) = § m(u)zo(u) + (1 —m(u))n(u), noise,
me(0,1]A J Gogm(u) (v —w)zo(v) dv, blur,

flute: 0.9973 flute: 0.0007 Learned Mask

Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In ICCV (pp. 3429-3437). 21



LIME for Post-Hoc Local Interpretability

* Model Agnostic: show which features were most important for the model to make the

decision

* Local fidelity vs interpretability: melg L(f, g, 1)+ Qg)
g

* (;:class of linear models

D(x,z) 2

* T[x(Z) =e o2

2
¢ L(f’g’n.X') — Zz’zlezn.X(Z)(f(Z) - g(Z ))
* Q(g) is the task-specific interpretability measure (e.g., limiting number of words in text mining,

number of super-pixels in image processing)

of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).

!
I

+ 0

I
+ @
+4 @
—H. o +
| @ o®

I
I

[]

Example #3 of True Class: ‘ Atheism m@o
Algorithm 1 Algorithm 2
‘Words that Al considers important: Predicted: ‘Words that A2 considers important: Predicted:
GOD| . Atheism Posting . Atheism
. sheeze mean Prediction correct: Host Prediction correct:
/ sheeze Flu EXpIaIner anyone J Re J
. weight CNMEL | [Headache ]
eadache .
headache Koresh in
no fatigue no fatigue through Natp
age Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Model Data and Prediction Explanation Human makes decision | X5 Hos: srge a verincom | Nntp.Posting Host: sarge.hq verdix com
Organization: Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should | trust you?" Explaining the predictions of any classifier. In Proceedings 24



LIME for Post-Hoc Local Interpretability

* .Use K-Lasso to gEt the tOp k most Algorithm 1 Sparse Linear Explanations using LIME
Impo rtant features Require: Classifier f, Number of samples N

Require: Instance z, and its interpretable version z’

e Can show inte rp retable su pe r-pi)(els Require: Similarity kernel 7., Length of explanation K

contributing to the prediction ff,;_z 2{1,2,3,...,1\/} do
2! + sample_around(z")
Z +— ZU(z], f(zi), 72 (21))
end for
w + K-Lasso(Z, K) > with z; as features, f(z) as target
return w

¥

v
(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should | trust you?" Explaining the predictions of any classifier. In Proceedings 25

of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
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Genetic Programming (GP)

yes

* A type of evolutionary algorithm ( Cororate o ) o0 { Evaluate the }

* Evolve computer programs rather than solutions initial population

4

* Representation of computer programs
* Tree-like, graph-like, linear, ...

statement
sequence

A

population

A

[ Generate an offspring )
population by

crossover, mutation,
reproduction

.

v
(Select individuals for the |
new population from the

current population and
__the offspring population |

=r[l] / 1.3;

= if r[l] < O then

r[2] * -5.5;
sqrt (10) ;
r[1l] + r[1];
log(xr[3]);
r[3] >= r[0];
abs(r[2]) ;

r[0] else r[3];

while return .
while b # 0
condition if a > b
compare| variable a := a — b max
. body -
op: # name: a
else r [i]
r
/ \ b :=b - a e [0]
r
variable constant . . return a [ ]
name: b value: 0 ranc r[3]
r[1]
condition if-body else-body e r[l]
3
compare - . r [0]
. assign assign
/ \ / \ / \ -
variable variablel |variable bin op variable bin op X y
name: a name: b| |name: a op: — name: b op: —
/ \ / \ max(x * y,x xy + 3)
variable variable variable variable

name: a name: b name: b name: a

31



Genetic Programming (GP)

* Individual generation (Tree-based representation)
e Terminal set: inputs of the program and constants, no argument, form the leaf nodes,

* Function set: operators to the inputs and intermediate results of the program (e.g. +, -, max, ...),
form the non-leaf nodes

e Start from the root node

* For each node, randomly sample from the terminal/function set

* If sampling from the terminal set, then stop this branch
* If sampling from the function set, create the child nodes, and recursively sample the child

nodes
+
/\ Terminals | Functions

7 N X +

*
y ; _
/\ 1 *
X 1 /




Genetic Programming (GP)

* Sufficiency and Closure for success of GP
 Criteria for selecting the terminal and function sets

* Sufficiency: There must be some combination of terminals and function symbols
that can solve the problem
* If the target program is to calculate log(x) + 2%, but the function set is {+, —,*,/}, then not
sufficient
* Closure: Any function can accept any input value returned by any function (and
any terminal).

* If the function set includes AND (boolean, boolean) and +, then not closure, since we may
have AND taking the real-value inputs.

33



Genetic Programming (GP)

* GP genetic (Crossover/Mutation) operators depends on representation

Parent Gene
(x1+(-3"x2))"(7-tan(xz))

Mutation

Child Gene
(X1 #(-3"%2))"(7-9"4)

Parent Genes

(5/%™xz)+cos(xy)

Child Genes

34



GP vs GA

Genetic Algorithm Genetic Programming

> Bit string representation > Tree-like structure
»Fixed in length »Vary in length (D
» Inflexible > Flexible
O - )
tlol1]2]ol1]o]1]1]0 000066
D

35



GP for Symbolic Regression

* In real world, the relationship structure between variables are usually unknown

* Symbolic regression is to learn both the model structure and coefficients

* Can be very helpful for natural law discovery

C

Detected Invariance:

TSy L (m+m)o*+mL w? +
f m,L Lo ®,cos(@, -0, -
19.6L (m +m,)cos &, —

19.()m:L:éos 0,

345 35 36 36.5 37

355
Time (s)

Physical System

Schematic

Experimental Data

[
Time (s)

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. science, 324(5923), 81-85.

Inferred Laws

11428V + 692.32x

Hamiltonian
V- 6.04x
Lagrangian

a—0.008v —6.02x

Equation of motion

-142.19x, — 74.65x, + 0.12x,> —
1.89x1x, — 1.51x,> — 0.49v,” +
0.41v,v, — 0.082v,’

Lagrangian

1.37-0” + 3.29-cos(6)
Lagrangian

2.71a + 0.054w — 3.54sin(6)

Equation of motion

(x—77.72)* + (y — 106.48)

Circular manifold

=

w,z + 0.32(032 —
124.13cos(8,) — 46.82cos(6,) +
0.82(0](()3(:05(9] = 03)

Hamiltonian

36



GP for Symbolic Regression

* Given a set of training data (xq, x5, ..., X, V)
* Define terminal set {x{, x5, ..., x;;, W}
* Define function set {+, —,*,/,log, ...}
e Define the fitness function
 Mean squared error Y;(gp(x;) — y;)*
* Can consider regularisation (generalisation performance)

* Initialisation
* Use the program generation (grow, full, ramp-half-and-half)

* Breeding
 Elitism: select the top individuals directly
* Tournament selection to select parents
* Tree-based crossover and mutation, reproduction
* Directly copy the generated offspring to the next population

0.8

3.8

8.8




GP for (Binary) Classification

* Given a set of training data (feature vector and class label)
* Evolve GP program in the same way as regression

* Translate the final real-valued output into class prediction

- Classl ? Class2 U
& [®] (2] [0 (7]
| %1 'kfzt ﬁé‘ [0.82

Genetic Program: (+ (* 0.23 F3)
(IF (- F1 F2) 0.46 (/ F3 0.82))

)
if ProgOut < 0 then Classl else ClassZ;|

38



GP for Learning Decision Making Policy

 Dispatching rules in job shop scheduling

* When a machine becomes idle, select the next job in the queue
* E.g. first-come-first-serve, shortest processing time, ...

* Routing policy in vehicle routing
* When a vehicle becomes idle, select the next customer to serve
* E.g. nearest neighbour, path scanning, saving, ...

* Use GP to learn a priority function of the candidates (jobs, customers, ...)
 Calculate the priority of the candidates

 Select the next candidate based on priority

RSPT rule

[ 0 ] [ProcTime]

2PT+WINQ+NPT

| W] [WKR} [NPT] [WlNQ}

[ PT )

[ PT } [WINQ]

39



GP for Learning Decision Making Policy

e Given a set of training data (problem instances)
* Define terminal set: the state attributes/features, constants
 Define function set: {+, —,*,/,log, max, min, ... }

e Define the fitness function
* For each training instance, run a simulation (meta-algorithm) using this GP rule, get a solution to the
instance
* Calculate the objective value of the obtained solution
* Fitness can be set to the average normalised objective value of the solutions

Training
instance 1
Training
instance 2

Solution 1

D solution
. quality

1

Meta-algorithm

Training
instance n

Solution n

/Individual

Fitness
¢

40




Outline

* Introduction to XAl
* Introduction to GP
 Better Interpretability Through GP

* Challenges and Future Directions
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Learning Performance vs Explainability with GP

Neural Nets

Bayesian
Belief Nets

Deep
Learning

MArKOV 1
&

=

oy
Decision Y
Trees

Genetic

/. E Programming
~_-® Ce

\

Explainability
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Better Interpretability Through GP

* Improve the interpretability of GP-evolved models
» Consider model size (e.g., number of nodes): bloat control
e Consider number of features used in the model: feature selection
* Consider model complexity (e.g., non-linear operators are more complex)
» Consider physical meanings (e.g., time cannot be added with length)

e Constrained GP (penalise less interpretable models)

* Multi-objective GP (accuracy vs interpretability measures)

» Simplification (e.g., tree pruning)

» Different GP representations (e.g., strongly-typed, grammar-guided, ensemble/multi-tree)
* Visualisation

* Use GP to interpret other complex models
* Post-hoc local interpretability
* Visualisation

43



Accuracy vs Model Size: Bloat Control

e Tarpeian Method (Penalisation): if an individual is too large (above average size),
then assign a very bad fitness to it

* Parsimony Pressure
* Linear: fit = obj + «a * size

* Lexicographic: divide the individuals into different buckets based on fitness, and select the
individuals first based on the rank of bucket, second based on size

* Double Tournament
* First tournament selects candidates based on fitness
* Second tournament selects the parent from the first tournament winners based on size

* Waiting room

* Operator equalisation
* Try to make a flat distribution of program size, reduce crossover bias

Luke, S., & Panait, L. (2006). A comparison of bloat control methods for genetic programming. Evolutionary Computation, 14(3), 309-344.



Multi-Objective GP with a-dominance

* It is hard to balance effectiveness (e.g., accuracy) and size during the MOGP
search

* If not evolve properly, the population can be easily biased to small but bad
individuals, and lose exploration ability

* Use a-dominance to adjust the balance between effectiveness and size

o = 0: normal dominance relationship
 a = oo: single objective with only effectiveness

> >
Perf Perf

LR ]

(a) =0 (b) @ =10 (¢c) o« = 100

Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

45



Multi-Objective GP with a-dominance

 Test on uncertain arc routing, to evolve routing policies

e Use NSGA-Il + GP

 Different a adaptation schemes
* Linear: gradually shift from effectiveness to size

* Sigmoid: focus on effectiveness first, then quickly shift to size
* Cosine: focus on effectiveness first, shift to size, then back to effectiveness, and back and forth

constan \ o

\ sigmoid
a \

\ cosine

. 50
Generation

Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. 46



Multi-Objective GP with a-dominance

* Much better than normal MOEAs
* The sigmoid adaptation seems better than linear and cosine

ugdbl
ugdb2
ugdb8
ugdb23
uval9A
uvaloD
uvall0A
uvall0D

0.9071
0.9153
0.9142
0.8889
0.9756
0.9190
0.9736
0.9302

HV value

0.8645
0.8894
0.8625
0.8738
0.9577
0.8528
0.9534
0.8986

0.9389
0.9395
0.9404
0.9295
0.9781
0.9393
0.9832
0.9518

0.9427
0.9572
0.9505
0.9416
0.9853
0.9581
0.9905
0.9724

0.9423
0.9423
0.9427
0.9341
0.9811
0.9480
0.9859
0.9630

Large

S ————
consent \

a

Iy

Generation

eslinear

essigmoid

\ \ cosine
\

50

RP = maX(Sl, 52),

51

52

DC = CFH + CTT1,

DEM1

DC—CFR’

Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc

routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.




Multi-Objective GP with a-dominance

» Select the most effective rule from the Pareto front, compare its effectiveness and size
* Traditional MOEAs biased too much to the small but bad individuals
e a-MOGP can obtain similar effectiveness with much smaller size

Size Size Size Size
ugdbl 355.47 74.6 373.2 10.0 389.15 8.4 358.4 17.33
ugdb2 371.72 7193 39238 6.93 404.08 5.73 370.8  26.53
ugdb8 463.34 6547 476.3 7.07  509.82 5.6 4489  30.87
ugdb23 252.47 71.8 260.2 8.27  262.35 8.6 252.0 33.07
uval9A 335.13 56.93 351.3 9.73 371.24  8.53 336.4  26.07
uval9D 478.14 69.27  522.7 10.33 586.58 7.53 479.3 37.0
uvall0A 439.41 60.47  460.0 8.0/ 48159 453 440.9 15.73
uvall0D 620.91 65.33 668.9 8.93 699.8 9.2 622.2 34.13

Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. 48



Multi-Objective GP with a-dominance

e Learn to adjust the a value online, rather than setting it manually
* |f there are many small but bad individuals in the population, increase a

* |f there are many large individuals in the population, decrease «

e Calculate the boundaries found so far

* Ugrs and L ¢f for effectiveness
* Ugize and L, for size
* Find the current pareto front

* Calculate its average avgerr and avgsize

ueff+lef

Ugizetlsi
> L and avgsye > —S2e7512¢ then

If avgerr <
a=a—A

ueff+lef

Ugizetlsi
> L and avgspe < —S2e7512¢ then

If avgerr >
a=a+A

Size A © Previous individuals
Ugjgel "7 i DR > R O Current individiuals
0 . . @ Current Pareto front
E gk Avg of the @
®
' o .
' o :
g P & (avgeff: avsgsize)
' o o
[ ) .
° :
Lsize|--=-rrevresedrmersnrnnniiiaanne, .
- | o
Lerr Uery Effectiveness

Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
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Multi-Objective GP with a-dominance

e Better Pareto front on different instances
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Wang, S., Mei, Y., & Zhang, M. (2021). A Multi-Objective Genetic Programming Approach with Self-Adaptive a Dominance to Uncertain
Capacitated Arc Routing Problem. In 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
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Multi-Objective GP with a-dominance

 Select the most effective rule from the Pareto front, compare its effectiveness
and size
 Slightly better than a-MOGP
Better than SO-GP and SPEA?2
Different a adaptation for different instances

oL e R —
gdb2 et
size size size size 3.01 ° 33223 ’
val9A
ugdb1 35547 746  389.15 8.4 354.77  27.67  351.82  34.47 2.51 -« vaiop

* vall0A
ugdb2 37172 7193 40408 573 37017  28.8  372.92  28.07 %2-0' * wiooj

> i -
ugdbs 43034  65.47  509.82 5.6 441.05  51.67 43373  51.2 . .

] . piebiditiisTtl]
ugdb23 25247 718  262.35 8.6 250.46  47.53 25123  37.07 1.0 "‘““.“usuunhtmmm
uvaloA 33513 56.93  371.24 853 33603 284  333.87  32.27 el x;o‘“""

0.0 +#
uvaloD 478.14  69.27  586.58  7.53 47424  58.0  477.67  40.7 : : . , : :

0 10 20 30 40 50
uval10A 439.41  60.47 48159 453 44051  19.27 43818 258 Generation
uval10D 62091 6533  699.8 9.2 619.58  47.67 62021  42.4

Wang, S., Mei, Y., & Zhang, M. (2021). A Multi-Objective Genetic Programming Approach with Self-Adaptive a Dominance to Uncertain
Capacitated Arc Routing Problem. In 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. 51



GP with Feature Selection

* Reducing the number of used features in the final evolved GP model can
improve interpretability

e Although GP can naturally do feature selection, we may need stronger and
explicit feature selection for complex problems

* The key issue is to estimate the feature importance based on the information
collected during the GP process

o Offline
* Online



GP with Permutation Importance for Symbolic Regression

* Run GP to get a good model

e Best trained model in the run

* For each feature in the good model, do a permutation

test to calculate the feature importance

FI

* Select the features with large importance: Fls4(X;) > 0

raw(

(Flraw(X]’Ib 1))

sca(X) - el

a/Nn

Xj, Ib) = Ern mt(Ib) - Errorg(lb)

e Run GP again with the selected features

_7/

Data

Training / Selected
Data GPPI Training Data /
_______________ Selected GP for Symbolic Training
PR I‘g atures Rq_,rusmn RMSEs
—_— C’kl(tltd Rq_,ru.slon Test
fest Data // TestData /7 Models  / Z RMSEs  /

A 4

GP run for Permutation Feature Importance

Training
Data

/

/

Randomly Split

/

Sub-training
Data

/

Sub-test
Data

v

GP

/

Best GP

/

Model I»
I

v

Errog oOf In

Obtain the test error

v

Calculate Permutation |
Feature Importance

Raw feature
importances

/

/

Calculating Permutation Feature Importance

Collect all the distinct features

{Xp, Xm, very XA} in s

i1ish calculatingthe
importance of

For feature X, in

{X, Xn, ..., Xi}, permute the
values of X;within the
sub-test set

Obtain the generalisation
error Errym of In over the
permuted sub-test set

v

Calculate the raw feature
importance Flxjof Xj
Flxj=(Errpm— ErToy)

e e e e e e — — —— — —

Chen, Q., Zhang, M., & Xue, B. (2017). Feature selection to improve generalization of genetic programming for high-dimensional symbolic
regression. IEEE Transactions on Evolutionary Computation, 21(5), 792-806.
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GP with Permutation Importance for Symbolic Regression

* Much better generalisation/test performance (since the models are simpler)
e Can select much fewer features than existing methods
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Chen, Q., Zhang, M., & Xue, B. (2017). Feature selection to improve generalization of genetic programming for high-dimensional symbolic
regression. IEEE Transactions on Evolutionary Computation, 21(5), 792-806. 54



GP with Feature Selection for Learning Scheduling Rules

* Run GP for 30 times, collect 30 best GP rules
* For each feature of each best rule, do a permutation test (set the feature to 1)

* Calculate obj(Ip): run simulations of the training set using I, calculate the objective values of the solutions
e Calculate 0bj(1b|Xj = 1): replace all Xj to be 1in I, and rerun the simulations
« FI(X;,1y) = obj(Ip|X; = 1) — 0bj(Ip)

* Select the features with FI(XJ-, Ib) > (O for over 15 of the best GP rules

* Run GP again with the selected features

Fit(tree) = 0.9
Fit(tree|b=1) = 1.1
Contribution(b) = 0.2

Contribution(c) =0
Contribution(d) =0
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GP with Feature Selection for Learning Scheduling Rules

* Test on dynamic job shop scheduling problem
* Minimise mean weighted tardiness

* Much best test performance
* Selected 6 out of the 16 features

Description

Min. Weighted Tardiness l motaton

NOW
PT

100 IPT
NOPT
95 ORT
90

m All Attributes N%RST
85 -
80 -

WIQ

WINQ

NOIQ

m Selected NOINQ
. WKR
Attributes NOR
123456738 FDD

. DD
Scenario W

Avg. Fit% Rel. ATC

The current time.

Processing time of the operation.
Inverse of the processing time.
Processing time of the next operation.
Ready time of the operation.
Ready/Idle time of the machine.
Ready time of the next machine.
Work in the current queue.

Work in the next queue.

Number of operations in the current queue.
Number of operations in next queue.
Work remaining (including the current operation).
Number of operations remaining.
Flow due date of the operation.

Due date of the job.

Weight of the job.

Yi Mei, Mengjie Zhang, Su Nguyen, "Feature Selection in Evolving Job Shop Dispatching Rules with Genetic Programming," Genetic and

Evolutionary Computation Conference (GECCO), Denver, USA, 2016.

56



Two-Stage GP with Feature Selection

* Many GP runs are need to collect the data for feature selection
* Adiverse set of good GP models

* Speed up the process for data collection

* Asingle run rather than multiple runs (use niching to obtain a diverse set)
* Use surrogate (shorter simulations) to speed up evaluation

» Stage 1: run GP to get a diverse set of good models for feature selection
* Use surrogate evaluation and niching

* Feature selection using the diverse set of good GP models
* Permutation test

e Stage 2: run another GP with the selected features

Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for evolving job shop scheduling rules with genetic
programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 339-353.



Two-Stage GP with Feature Selection

* Test on dynamic job shop scheduling problem

* Minimise mean weighted tardiness
* Original simulation: 2500 jobs, 10 machines

* Surrogate simulation: 500 jobs, 5 machines

* Clearing for niching

e Calculate a behaviour vector for each individual

e Calculate distance between individuals based on their

behaviour vector

* For the individuals with the same behaviour vector, keep only
the best-fit one (set others to worst fitness)

w
o

N
w
T

N
(=]
T

mean tardiness
s r

w

o

5 lIO 15 20 25 30
mean tardiness of simplified model

105

CFH

DEM

SC

Tasks| Task Attributes |Ranking|Charact- .
in Q|CFH DEM SC |by Rule |erisation !
Q| 5 2 8| 2 )
Ql 9 2 3 1 X "
Qor 5 9 8 1 : 5
250 3 1 6 2 -
23, 6 4 9 3

30 7 5 I 2 3
233 1 2 2 1

Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for evolving job shop scheduling rules with genetic
programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 339-353.
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Two-Stage GP with Feature Selection

* Mostly better than “All features”, no difference with “Best Feature Subset”
* Sometimes even better than the current “Best Feature Subset”
* Example selected set: {PT, NOPT, WINQ, NOINQ, W}

e e R e
AR e o A it
2535‘é;ﬁéﬂéﬁﬁ*ﬁiéﬂﬁé* L §§:¢4&né++éé+%;4+4ﬁéé+m+¢ﬁé

Test Perf (%)
[(e}

Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for evolving job shop scheduling rules with genetic
programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 339-353.
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Two-Stage GP with Feature Selection

* Feature selection requires running GP to
collect the good GP rules

Stage 1 Stage 2
* The gOOd GP rules were ONLY used for ¢ zzmmmmommmeeees ! 'r“"I_'—tT_IT"tj“"'_t_h “““
. . itialisati ! ' nitialisation wi
calculating the feature importance, but '”'“a"fam” P " individual Adaptation
ignored in the GP with the selected - — | |! Final population }| |! '
itness evaluation A !
features —>| with Niching and | [ ;----------------3| ! | Fitness evaluation [«
Surrogate ! i Feature Selection E E
* Stage 1: run GP to get data for feature I B | '
selection and final population Selection ; | Selection
Y E E Y
Breeding E | Breeding

———————————————

e Stage 2: run another GP using the final
population (adapt the individuals)

Return best

individual

* Niching and surrogate are used i

_-__*_______-__________
&
»
2]
~+
[
Q
)
N
Z
o

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic

flexible job-shop scheduling. IEEE Transactions on Cybernetics. 60



Two-Stage GP with Feature Selection

 Stage 2 individual adaptation: adapt “promising” individuals, re-initialize the remaining

* Use “knee point” to detect “promising” individuals [T ————— a

7= m Tasks| Task Attributes |Ranking|Charact-
H 1 in Q|CFH DEM SC'|by Rule |erisati
* Two adaptatlon strategles e L B o e ;"0":
9 2 3 1 %
* Replace the unselected features by 1 IENIE
. . o . 6 4 9 3
* Mimicking behaviour 7 s 1| 2 ||3
1 2 2 1 I
* Randomly generate many individuals with the selected features
* For each promising final individual, replace with the newly generated individual with the most similar behaviour
4000 T T T H T T S5rov % U T oo T
: : : ! : ! i 00 : : ° © o hd
9 o o o : :
3500 % P o o i, °
R e ST T :
3000 e e T T
28 |° 6o i%o ©| L *<° e
£ S Y O LY SO - S S Y- TR SO A i
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Promising individuals e Lo ieuy  ° 10 Newindividual |
500 : i : > ; : ol ° °8 o 8 | o § * Promising individual |
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Index of individual Phenotypic characterisation in decision situation 1
Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic
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Size of Routing Rule

Two-Stage GP with Feature Selection

 Test on dynamic flexible job shop scheduling
e Cooperative Co-evolution GP to co-evolve routing and sequence rules

* Almost the same test performance
* Much smaller rule size and number of used features (mimic version)

#features used in sequencing rule

Sl <Fmean, 0.95> Scenario CCGP CCGP2(mimic)
70- . "_/l”*,-\" 70 - - R, T i
PRV A ST W Fmax,0.85 7.13 5.20
60- M 60- VI
50- ' 50 - - N Fmax,0.95 7.40 5.17
40- Yy i Fmean,0.85 6.57 3.70
30- ' 30-
' 20- Fmean,0.95 6.90 3.70
0 25 50 75 100 0 25 50 75 100 |\ FViean.0.85 6 53 4.00
Generation
WFMean,0.95 6.80 4.27

CCGP CCGP? — CCGP*(rand) — CCGP*(rep) CCGP?*(mimic)

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic
flexible job-shop scheduling. IEEE Transactions on Cybernetics.



Two-Stage GP with Feature Selection

* Example evolved rules are simpler

With feature selection

Ry =min{2x NIQ, ma:z:(Nﬁ?MtjlfT,

PT « WIQ xmin(WIQ,WKR))}+

PT
NIO % —— — MWT
Q* 357

¢ _PT+WKR
W
144 44

PT'+ WKR

(W« WIQ+ WKR + WA WIO— W+ WKE

)

Without feature selection

Ry =maz{NIQ? (NIQ+ NPT) «min(NIQ, NOR)}
' WKR
—minMWT e WRR -1
s max{WKR,—MWT « WKR+
NIQ x PT « max{W1IQ, min(MWT,PT)}

(W+WKR)
maz{NIQZ, NOR-W+WKR

NIQ+NPT }}
W > (min(NIQ,NOR))—1

WKER « max{PT, WMI/Q

WIQ NIQ
e T WIQ)

NIQ - 1})

Sy =NIQ(PT — W)(PT +

max{WI1Q, WEE
12 W W) + max{

* (MWT + W + max{ WER

w2’
maz{WI1Q, 58
*

W

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic

flexible job-shop scheduling. IEEE Transactions on Cybernetics.
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GP with Model Complexity

* Different operators/functions have different complexities
* Multi-objective GP (effectiveness vs complexity)

/7
/ Complexities
Terminals 1
.p o +I ) X 1
_ 7.' p —;,—‘)_T‘_ S4, ll
i [s1] T —3. otherwise
, . ) / 2
Ci=14141424+44+1=10 Co=14+14+14+14+14+5=10
AND, OR 4
. Tanh, abs 4
@ @ " >

sa/lsil. if T
ﬁ‘{l/l e

3/|s1|, otherwise

C3=1414+14+5+4+2+4+4+1=15 C4=1+1+1+1+1=5

Hein, Daniel, Steffen Udluft, and Thomas A. Runkler. "Interpretable policies for reinforcement learning by genetic programming." Engineering
Applications of Artificial Intelligence 76 (2018): 158-169.



GP with Model Complexity

Ll . .
* Results on learning Mount Car policies
. Ev3 - & o
sin (3p) a a3t ?
1.0 2>
T 425+
g
3
1.5_ g 42 + L
415 L
0.0
T
T T T T >
15 -10 05 00 05 p 0 20 40 60 80 100
complexity
1 3 5 7 8 9 1 12 13 15
I I I I T I I
| # |85 ] [-»+5955] [-231p+1115)] | —pp +4.59)% — 3.08p +14.13) | || =8.24pj + 1.84p% — 2.69p +12) | | if(p < —1.15)then(3.71)else(8.33)
I I
[ 5 | [850] [-p+595] [ -131p+6.64) ||| pp = 2p +9.53p ] [ —tanh (11.095) — p+10.87) | [~1.12tanh (10.42)) — 1.12p + 11.78)
I I |
[ P | | 8.5p | | p+ .',.m,,| | 1.32p + 6.69p ] | 2p + 10.28p + 0.01 | [ pp —2p +9.53p
I I
[ | [856] [-r+595] [-2320 + 11155 | [-7.77pp + 7.77)% + 10.295 - 3.62]
I I
| P | | 8.5p | | P+ .’,As).",,,l | 2p + 10.46p | | op —2p + 9.52p ] | pp — 2p + 8.39p | | —pp — 0.72p° — 2p + 9.30p
I I
[ 6 | [850] [-p+5945] [-221p+11.155]|[-4.680p + p* — 1.94p +9.07p)
I I I |
[ 5 ][85] [-r+595)] —p + 5.95p | ( ol — p+6.55p — 0.85 | [ 27900 - 2.795 + 10.89p — 1.71
I I I
[ p | | 8.5p | | 0+ .’,sn,,l | 2 —p+643p ] pp —2p+94Tp
| | |
[ F | | s.a,:] |7,,-.»'.1».x,1] [ 2.31p + 11 1:;,.| | 23.65p|p| — p + p ] [ if(p < —1.15)then(5.94)else(8.507)
|
[ 5 ] [850] |-p+5945] [ -0.990+5.91 |

Hein, Daniel, Steffen Udluft, and Thomas A. Runkler. "Interpretable policies for reinforcement learning by genetic programming." Engineering
Applications of Artificial Intelligence 76 (2018): 158-169.



GP with Model Complexity

* Expressional complexity: total number of nodes in all the subtrees
» Prefer flatter trees rather than deeper trees
* Fewer nested functions (+)

. . . 1 + 2 + 1 + 4 = 8
* Order of Nonlinearity complexity g o
Node Complexity ‘ ° ° (+)
Constant 0 ®OQQ®° @0
() () © ©
Variable 1
feg Comp(g) * ns
g1+ 92 and g; — g, max(Comp(g,), Comp(g,))
g1 * g2 Comp(g,) + Comp(g,)
91/ 9> Comp(g,) + Comp(g,) * ng;y,

Vladislavleva, E. J., Smits, G. F., & Den Hertog, D. (2008). Order of nonlinearity as a complexity measure for models generated by symbolic
regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation, 13(2), 333-349. 66



GP with Model Complexity

* Order of Nonlinearity complexity
* ny is the minimum degree of the Chebyshev polynomial approximation of f(-)
* N4y IS the minimum degree of the Chebyshev polynomial approximation of 1/x in its range

Order of Non-linearity = 18

* Chebyshev polynomial approximation
*  max ]|f(x) — Yt Ti(x; a,b)| <e€

X€SC[a,b
2x—(b+a)
* Ti(x;a,b) =T; (%)

* T; is the Chebyshev polynomial

Expr. Complexity = 1+1+43+4=9

0. 4]

Node Complexity
feyg Comp(g) * ns
91/ 92 Comp(g,) + Comp(gz) * ngjy

ON=12

Vladislavleva, E. J., Smits, G. F., & Den Hertog, D. (2008). Order of nonlinearity as a complexity measure for models generated by symbolic
regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation, 13(2), 333-349. 67



GP with Model Complexity

* Measure model complexity based on statistical learning theory

* VC dimension: the capacity (complexity, expressive power, richness, or flexibility) of a space of
functions that can be learned by a statistical classification algorithm.

 How many points this family of functions can shatter?

e Structural risk minimization as fithess

R(a) < Remp(a) + \/ % [h (10% (%) - 1) ~log @]

_ +
* 7 a
= = =_— + —
3 points shattered 4 points impossible

Chen, Q., Zhang, M., & Xue, B. (2018). Structural risk minimization-driven genetic programming for enhancing generalization in symbolic
regression. IEEE Transactions on Evolutionary Computation, 23(4), 703-717. 68



GP with Model Complexity

* Among the best test error, more compact/interpretable model
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(4(+(*(0——0.332) (sqrt(0— (*(%1.021) (+(%1.021)x3)))
(x(%1.021)(0—=z1)))
—0.332)))—0.95) (+(*(+(sqrt .
BGP (0—x9))(*—0.978x1 ) (+(*xq 4 P R or ) . E*Efl.nzl(l(:-m;r(z:()))() ) 11‘(1?+21112+1)1/2
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Chen, Q., Zhang, M., & Xue, B. (2018). Structural risk minimization-driven genetic programming for enhancing generalization in symbolic
regression. IEEE Transactions on Evolutionary Computation, 23(4), 703-717.
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Dimensionally-Aware GP

* The combination should be dimensionally consistent
* E.g. Time + Distance is meaningless

e Use grammar to keep dimensional consistency

An example grammar to construct features for a physics (Higgs) dataset

<start> ::= <E> | <A> | <F>
<E> ::= <E> + <E> | <E> - <E> | <E> * <F> | <E> / <F> | Evolved features
sqrt (<E2>) | <termE>

<A> ::= <A> + <A> | <A> - <A> | <A> * <A> | Acos(<F>) | cos (¢°P — ¢7)
Atan(<F>) | <termA>

<F> ::= <F> + <F> | <F> - <F> | <F> * <F> | <E> / <E> | COS (916[}_97’)
<A> / <A> | <F> / <F> | cos(<A>) | sin(<A>) | coq(om“ﬁmy-okp)
tan(<A>) | <termF> S\ ‘

<E2> ::= <E2> + <E2> | <E2> - <E2> | <E2> * <F> | pleadingz jets (Emissing*_, 1617)2
<E2> / <F> | <E> * <E> | <termE2> T Pr T Pr

2 lep T 2

E: energqgy; 7nHo4—<pT 4—pT)

E2: squared energy;

A: angle

F: float

termX: constant of type/dimension X

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent feature construction with constrained genetic programming for
experimental physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.



Dimensionally-Aware GP

* Each GP node has a dimensionality vector

* Each dimension indicates the exponent of the corresponding unit of measurement
* E.g., [0,0,1] means the dimension of mass

* The vector is changed/propagated by functions

Function Operand Result
Dimensionality

Exponentiation: [0,0,0] [0,0,0]
Logarithm: [0,0,0] [0,0,0]
Square Root: [x.y,Z] [x/2,y/2, 2/2]
Addition: [x,y,z], [x,y,Z] [X,y,Z]
Subtraction: [x,y,z], [x,y,Z] [X,y,Z]
Multiplication: [x,y,z], [u,v,w] [x tu,y+v,z+w]
Division: [x,y,z], [u,v,w] [x-u,y—v,z-w]
Power: [0,0,01, [0,0,0] [0,0,0]
PowScalar (c¢): [x,y,Z] [x*c, y*c, z*c]
If less than zero: [0,0,01, [x,y,z], [x,y,Z] [x,y,z]

Keijzer, M., & Babovic, V. (1999, July). Dimensionally aware genetic programming. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 2 (pp. 1069-1076).



Dimensionally-Aware GP

* Each GP node has a dimensionality vector

* Each dimension indicates the exponent of the corresponding unit of measurement
* E.g., [0,0,1] means the dimension of mass

* The vector is changed/propagated by functions

Dimension transformation to resolve
dimension violation

Function Operand Result
Dimensionality
DimTransform | [u,v,w] [x+u,y+v,z+w]
c[x,y,z]:

If less than zero:

0,0,01, [x,y,z], [x,y,Z]

Function Operand Result
Dimensionality
Exponentiation: [0,0,0] [0,0,0]
Logarithm: [0,0,0] [0,0,0]
Square Root: [x,y.z] [x/2,y/2, 2/2]
Addition: [x,y,z], [x,y,Z] [x,y,2]
Subtraction: [x,y,z], [x,y,Z] [x,y,2]
Multiplication: [x,y,z], [u,v,w] [x +u,y+v,z+w]
Division: [x,y,z], [u,v,w] [x-u,y—v,z-w]|
Power: [0,0,0], [0,0,0] [0,0,0]
PowScalar (c¢): X,Y,Z] [x*c, y*c, z*c]
[

[x,y,2]

Keijzer, M., & Babovic, V. (1999, July). Dimensionally aware genetic programming. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 2 (pp. 1069-1076).
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Dimensionally-Aware GP

* CullingGP: Dimensionality-Aware Breeding

* Select two parents by tournament selection (the same as standard GP)
* Generate many offspring (> 2)

Goodness-of-Dimension = E V|+|z

* Select the offspring with the best goodness-of-dimension x,.|+
* Multi-objective (error vs goodness-of-dimension)

* Better test performance for noise data, better dimension violation

’ —©- Standard -8-M-0 —&—Brood —>M-O + Brood ‘

16
51 —6— Standard /\ //\S\SN
14 f\

s AV S

4 1 12
MO Brood ?/e/ /\Q/ﬂ\g\/ﬁ_ﬁ
A - - q = 10 Y-

e =8
£ /

z f\

S 8 N

N

M 4w\[ HM‘Q—H P

SN T
1T = = s = 5 = = % = = = % = 5 = = = = =+ =5 =5 =5 =5 =5 =+ =5 =5 =+ =5 =5 =35 ==

Time 10 19 29 38 48 56 67 77 86 96 106 115 125 134 144 154 163 173 182 102 202 211 221 230 Time 10 19 29 38 48 58 67 77 8 96 106 115 125 134 144 154 163 173 182 192 202 211 221 230

Time (seconds)
Time (seconds)

Keijzer, M., & Babovic, V. (1999, July). Dimensionally aware genetic programming. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 2 (pp. 1069-1076). 73



Dimensionally-Aware GP for Scheduling Rules

* The job shop scheduling state features have three dimensions

e TIME: processing time, due date, slack, ...
 COUNT: number of remaining operations, number of jobs in the queue, ...

* WEIGHT: the weight (importance) of a job
* Dimensionality vector (T, C, W)

* Minimise Dimension gap:

0, if node = x or / .
dimG d = : d|mGa :0 i = 0,'1,1
inGap(node) {(5(6(c1),9(c2)), otherwise. P dimGap=0 ( )
dimGap(tree) = Z dimGap(node),
nodectree PT (1,0,0) W (0,0,1) W (0,0,1) NlQ (0,1,0)
Function(s) Children Vector Values Result
+, —, max and min  (73,Cy, Wh), (T, Ca, W) (T“;TQ, 01302, ngwz)
X (T1,C1, Wh), (T2, Cz, Wa) (Th + T2, C1 + Co, W1 + Wa)
/ (T1,C,Wh), (T2, Cy, Wa)  (Ty1 —T5,C1 — Co, Wi — Wa)

Mei, Y., Nguyen, S., & Zhang, M. (2017, November). Constrained dimensionally aware genetic programming for evolving interpretable dispatching

rules in dynamic job shop scheduling. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 435-447). Springer, Cham. 74



Dimensionally-Aware GP for Scheduling Rules

e Constrained DAGP
* fit(x) = obj(x) + a(t) * dimGap(x)
* The penalty is adaptive based on balance between dimGap and obj in the population

. a(0) = — cov(dimGap(popy),0bj(popy))
var(dimGap(popy))
_ cov(dimGap(popys),0bj(popr))
* (X(t + 1) _ Of(t) —n* ( var(dimGap(popt)) + a(t)) Notation Description Dimension
* 1 = 0.01is the learning rate WIQ Work In Queue TIME
MWT Machine Waiting Time TIME
 Dimensions of the JSS terminals/state features PT Processing Time TIME
NPT Next Processing Time TIME
OWT Operation Waiting Time TIME
NWT Next Machine Waiting Time TIME
WKR Work Remaining TIME
WINQ Work In Next Queue. TIME
rEFDD Relative FDD TIME
rDD Relative DD TIME
TIS Time In System TIME
SL Slack TIME
NIQ Number of operations In Queue COUNT
NOR Number of Operations Remaining COUNT
NINQ Number of operations In Next Queue COUNT
W Weight WEIGHT

Mei, Y., Nguyen, S., & Zhang, M. (2017, November). Constrained dimensionally aware genetic programming for evolving interpretable dispatching
rules in dynamic job shop scheduling. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 435-447). Springer, Cham. 75



Dimensionally-Aware GP for Scheduling Rules

* Similar performance with the baseline GP (much better than CullingGP)
* Much smaller dimension violation than the baselineGP (larger than CullingGP)

An evolved rule for minimising TWT

rule = B1/B2

Bl = max((SL+PT)*max(min(SL,
WINQ),PT)/WKR,PT)
W*WKR/ (max ( (SL+PT) ,WKR)
*max (W, PT))

B2 =

Test Fitness

Test Fitness

<TWT, 0.85, 4>
1.5- S0 _|
1.0-
0 10 20 30 40 50
Generation
BaselineGP [:l CullingGP C-DAGP
<TWT, 0.95, 4>
1.4-
o |
N
1.2- i
1.0-
K:&\_,Q\S%} L
———
0.8
0 10 20 30 40 50
Generation

BaselineGP E CullingGP C-DAGP

Dimension Gap

25~

20~

<TWT, 0.85, 4>

s YWV S

0 10 20 30 40 50
<TWT, 0.95, 4>

0 10 20 30 40 50
Generation
BaselineGP CullingGP C-DAGP

Mei, Y., Nguyen, S., & Zhang, M. (2017, November). Constrained dimensionally aware genetic programming for evolving interpretable dispatching

rules in dynamic job shop scheduling. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 435-447). Springer, Cham.
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Grammar Guided GP

* Define the meaningful combinations (can include dimensionality consistency) in the GP
tree

Table 1 English grammar fragment

Sent — Sub Pred PP — Prep NP Prep — “‘on’’|“‘under”’
Sub — NP Adjs — Adj Adjs Noun — “‘cat’’|*‘dog’’
Pred — Verb PP Adjs — Adj I“floor’” “mat™’
NP — Det Noun Verb — “‘sat’’|*‘stood”’ Adj — “‘big’’|“‘small’’
NP — Det Adjs Noun Det — “‘a’’|“‘the’’ [“red”” 1“black’
Sent Sent
Sub Pred Sub Pred

\, N
NN
/\ /\ i /\

Det Noun Verb Prep Det Noun Det Adj Adj Noun Verb Prep Det Noun

the cat sat under a mat the big red dog stood on the floor

McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’neill, M. (2010). Grammar-based genetic programming: a survey. Genetic Programming and
Evolvable Machines, 11(3), 365-396. 78



Grammar Guided GP

e Grammar for rational polynomials

Exp — Poly/Poly Trm — Coef * Prod Coef — “x07’|**x1”’
Poly — Trm Prod — Var Var — “‘vO0’|*‘vl”’
Poly — Trm + Poly Prod — Var * Prod
e Grammar for ideal gas law
Exp — Trm Trm — Trm Mul Trm Add — ‘47| =7
Exp — Trm Add Trm Trm — Var Mul — x|/
Trm — Const Var — “T7|*°V”

* Crossover and mutation respect the grammar
* Swap subtrees with the same type

McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’neill, M. (2010). Grammar-based genetic programming: a survey. Genetic Programming and
Evolvable Machines, 11(3), 365-396. 79



Grammar Guided GP for Association Rule Mining

Items 7 = {iy, i,, ..., 1, }, transactions T = {t,, t,, ..., t,,}, tj © Jis asubset of

Associationrule X - Y, X c 7, Yc 7, XNY =0

If the antecedent X C t;, then highly likely that the consequent Y C ¢t; as well

Support(X): number of transactions containing X

Support(X — Y): number of transactions containing both X and Y

. support(X-Y)
« Condifence(X »Y) =
support(X)
Rule
. support(R) support(R)
e fit(R=X-Y)="LF % PP l
support(X) support(Y) v L 4
Antecedent Consequent
<Rule> ::= <Antecedent>, <Consequent> ¢ ’
<Antecedent> ::= <Condition> (<Condition> AND <Condition>)=* Condition class = no-rain
<Consequent> ::= class=value v ; S
<Condition> ::= <Numerical> | <Nominal> — Cmo) —
. onaition onaition
<Numerical> ::= name IN Min value, Max value v "
<Nominal> ::= name=value _
Nominal Numerical

Padillo, F., Luna, J. M., & Ventura, S. (2019). A grammar-guided genetic programming algorithm for associative classification in big data. Cognitive
Computation, 11(3), 331-346.
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Grammar Guided GP for Association Rule Mining

e Step 1: Rule extraction Rule
e Step 2: Rule selection v ¥
Antecedent Consequent

<Rule> ::= <Antecedent>, <Consequent> Condition
<Antecedent> ::= <Condition> (<Condition> AND <Condition>)* v v
<Consequent> ::= claSvaalue . comdition <;Mm;> condition
<Condition> ::= <Numerical> | <Nominal> ¥ v
<Numerical> ::= name IN Min value, Max value Nominal Nomerical
<Nominal> ::= name=value

<Classifier> ::= <Rules>, <DefaultClass>

( outlook = rainy )

Cemperature IN 10, 15)

Classifier

<Rules> ::= rule (rule)¥* é 6
<DefaultClass> ::= class=value

G outlook=wind THEN class= raer

Y

defaultClass

v

IF outlook = sunny THEN class=no- rauD Glass = no-raiD

QF temperature IN35, 40 THEN class=no-raD

Padillo, F., Luna, J. M., & Ventura, S. (2019). A grammar-guided genetic programming algorithm for associative classification in big data. Cognitive

Computation, 11(3), 331-346.
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Grammar Guided GP for Association Rule Mining

» Can get better effectiveness and complexity

* ForrulessetC = {R4,...,R,;}

. _ Effectiveness
« complexity = nY ", attributes(R;)

Algorithm Ranking

(a) Ranking for accuracy measure

DAC 4.350
MRAC 4.150
MRAC+ 2.700
DFAC-FFP 2.150
G3P-ACBD 1.650
Complexity o
(b) Ranking for kappa measure
Algorithm Ranking DAC 4600
MRAC 4.100
MRAC+ 2.800 MRAC+ 2.600
DFAC-FFP 2.200 DFAC-FFP 1.900
G3P-ACBD 1.000 G3P-ACBD 1.800

Padillo, F., Luna, J. M., & Ventura, S. (2019). A grammar-guided genetic programming algorithm for associative classification in big data. Cognitive

Computation, 11(3), 331-346.
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Canonical Form Function Expressions In Evolution (CAFFEINE)

 Special layer-based representation
* Linear layer: polynomial/rational of the variables + non-linear components
* Non-linear layer: a non-linear function of the linear layer
* Example: —10.3 + 3.1 * x, + 1.87 * x; * log(—1.95 + 10.3 * (x, * x-)/x5)

e Use grammar to implement

REPVC
REPOP

VC | REPVC * REPOP | REPOP

:= REPOP * REPOP | OP_ 1ARG(W + REPADD) |
OP_2ARG(2ARGS)

2ARGS ::= W + REPADD, MAYBEW | MAYBEW, W+REPADD

<OP_2ARG> ::= DIVIDE | POW | MAX |

<OP_1ARG> ::= INV | LOG10 |

<VAR> ::= X1 | X2 | . | Xn | W

VC is a vector representing the
polynomial/rational, e.g. [1,0,-2,1]=x; *x,/x3

McConaghy, T., & Gielen, G. (2006, July). Canonical form functions as a simple means for genetic programming to evolve human-interpretable

functions. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 855-862)
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Canonical Form Function Expressions In Evolution (CAFFEINE)

* Performs relatively well, and can get simple models

on SR" on b SRP 0.1 v."ul
—— CAFFEINE & Whighan '
—&6— CAFFEINE & GE t
01 CAFFEINE & Whigham & Intons |~ 011 01
_ -+ CAFFEINE & GE & Introns : \m _ Perf. Symbolic Model
5 os —+— CAFFEINE & SUX/SM 5 os \ 5 ons
w | ==~ Gimple & Whigham w \ w
g % —B- - Simple & GE g Wm Zg
£ Sl £ Air | -10.3 +7.08e-5/ id1
s A, s 0 +1.87 * In(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)
006 oo6| \\s 006 +1.42e+9%(vds2*vsd5) /
"00s0colgososesososve || (vsg1*vgs2*vsg5*id2))
v R I B I A R s taaer 1 aaee 3 £ 107( 5.68 - 0.03 * vsg1/ vds2 — 55.43 * id1+ 5.63e-6 /
Generation Generation u . . . -
id1)
PM 'l
o o PM 90.5+190.6 *id1/vsg1 + 22.2 *id2 / vds2
01 01 Voffset -2.00e-3
§ 009 § 009 g SR, 2.36e+7 + 1.95e+4 *id2 /id1 - 104.69 /id2 + 2.15e+9 *
id2 + 4.63e+8 * id1
¢t - SR, | -5.72e+7 - 2.50e+11 * (id1%id2) / vgs2 + 5.53e+6 * vds2
8 8 o 8 / vgs2 +109.72 / id1
006
* 005 k\
W0 0 N0 400 500 R o W so

McConaghy, T., & Gielen, G. (2006, July). Canonical form functions as a simple means for genetic programming to evolve human-interpretable

functions. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 855-862)
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GP with Simplification

e GP tree tends to have many redundant branches (introns)
* Use algebraic simplification to simplify the trees during GP process

No. Precondition Effective Result No. Precondition Effective Result
(1) if<0(A, b, c) — b if A < 0, else ¢ (2) if<0(a, b, b) — b

(3) A+ B — C, C=A+B (4) A - B — C, C=A-B

(5) A x A — C, C=A X B (6) A - B — C, C=A =~ B
(7) A+ (B + c) —C+c, C=A+B (8) A+ (B - c¢) —-C-¢, C=A+8B
(9) A - (B + c) —C-¢c, C=A-B (10) A - (B - ¢©) —C+c, C=A-B
(11) A x (B x c¢) —-C X c, C=A X B (12) A x (B = c) —C ¢, C=A XB
(13) A = (B = ¢) —C X c, C=A +B (14) A + (b + C) — B+ b, B=A+C
(15) A + (b - C) —- B+ b, B=A-C (16) A - (b + C) —-B -b, B=A-C
(17) A - (b - C) — B -b, B=A+C (18) A x (b x C) — B X b, B=A X C
(19) A x (b = ©C) —C X b, B=A =C (20) A = (b = C) — B =~ b, B=A X C
(21) a = 1 — a (22) a +~ a — 1

(23) 0 =~ a — 0 (24) 0 x a=a x 0 —0

(25) ax 1=1xa — a (26) a+0 =0+ a — a

(27) a -0 — a (28) a - a — 0
(29)ax%=%xa—>% (30)a><2=2—><a—>b

(31) a =~ 0 — 0 (32) A -0 — 0

Zhang, M., & Wong, P. (2008). Explicitly simplifying evolved genetic programs during evolution. International Journal of Computational Intelligence
and Applications, 7(02), 201-232.



GP with Simplification

* With proper simplification frequency, can achieve faster training time and smaller size
without worsening accuracy

* Evolved rules easier to interpret

7
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Zhang, M., & Wong, P. (2008). Explicitly simplifying evolved genetic programs during evolution. International Journal of Computational Intelligence
and Applications, 7(02), 201-232.
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GP with Simplification

* More simplification based on logic operators

Precondition(s) Simplification

Min(A, A+B) and B is always non-negative A
Min(A, A+B) and B is always negative A+B
root(B) sl s2  output | root(B) sl 52 output
Min(A, A-B) and B is always non-positive A-B +* >0 >0 >0 | max* >0 # >0
+* >0 >0 >0 max* >0 # >0
Min(A, A+B) and B is always non-positive A :[: - 8 - 8 P g zi < g < 8 < g
+* <0 <0 <0 max* =0 =0 =0
* Get the sign of the features using domain knowledge _ ., - .0 | wn- <0 + <o
* E.g., the job shop state attributes for scheduling rule learning B 28 28 ig min® §8 >#o §8
_ _ - <0 >0 <0 min* >0 >0 >0
* Propagate the sign in the tree - <0 >0 <0 | mn® =0 =0 =0
X * >0 >0 >0 - >0 >0 >0
X * >0 >0 >0 - >0 >0 >0
X * -0 =0 =0 - # =0 >0(=)
X * <0 <0 >0 - <0 <0 >0
X * <0 <0 >0 = <0 <0 >0
X * >0 <0 <0 - >0 <0 <0
x* >0 <0 <0 - <0 >0 <0
= <0 >0 <0
- >0 <0 <0

Panda, S., & Mei, Y. (2021). Genetic Programming with Algebraic Simplification for Dynamic Job Shop Scheduling. IEEE CEC.
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GP with Simplification

* Numerical simplification

e Empirically, how much a child contributes to its
parent’s output

* Check the value range of the nodes @ { e V::> e

* |f the range of a child is much smaller than the fdtion  Max Val = 7.3 Max Val = -7.33
parent’s min absolute value, simplify the / \
parent to the other child Node B Node C

* If the range of a node is much smaller than its " ] { T
own min absolute value, simplify it to a
constant (b) Node D Node D

* Can show comparable classification o = zoms J :(> st e

performance and reduce the program
size dramatically (~40%)

Min Val = 4.030 Min Val = 2.014

Max Val = 4.031 Max Val = 2.015

Kinzett, D., Johnston, M., & Zhang, M. (2009). Numerical simplification for bloat control and analysis of building blocks in genetic programming.

Evolutionary Intelligence, 2(4), 151-168.
88



GP with Phenotypic Simplification

* Define phenotypic behaviour of GP trees
* E.g., predicted values in regression, priority values in decision making

* Group/Cluster the GP trees based on phenotypic behaviour

* Simplification: replace a GP tree with a smaller/simpler tree with the same
phenotypic behaviour

* Niching GP
* Niching in the GP population based on phenotypic behaviour
e External archive: the smallest GP individual in each niche
* Multi-source breeding: select the parents from the original population and archive

Wang, S., Mei Y., Zhang, M. & Yao X. (2021). Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. IEEE Transactions on

Evolutionary Computation.
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GP with Phenotypic Simplification

* Niching GP

Initialize a
population Multi-source Breeding

Genetic Operator
i (Crossover,
A Mutation and
i : Original Populati
Evaluate i Reproduction) | Niche 1 s o;:nka:‘elozn Niche m // Irditional
Individuals l { ] ind 1[ind2[ind3]| [ind4[ind5]..... ind n / Trdiona Elism
E f Tournement
Niching Traditional Niching Gemetic New
i Tournament Tournament e Operators Population
Selection Selection ——
E 4 ind 2 ind 5 ------ ind n / Tournement lchiag
Reached? Niche 1 Niche 2 Niche m / s
>y . Tradional Representative Archive /
i Niching Eltism .l :
i Elitism
. Original
.................. Ard'm R T S
Return the - { Population
best Individual Niching

. Simplification

Wang, S., Mei Y., Zhang, M. & Yao X. (2021). Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. IEEE Transactions on

Evolutionary Computation.
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GP with Phenotypic Simplification

* Results on Evolving routing policy for UCARP

* Better balance between test performance and tree size

80 -

70 -

60 A

Tree Size

30 1

20 1

10 -

50 -

40 4

GPHH
GPHH-N
GPHH-A
Tarpeian
DT

LPPP

® »iao0

A

345.0 347.5 350.0 352.5 355.0 357.5 360.0

Test Performance

(a) Ugdb1

Tree Size

w
o
1

N
o
1

[
o
1

GPHH
GPHH-N
GPHH-A
Tarpeian
DT

LPPP

> X + 490

A

275.0 277.5 280.0 282.5 285.0 287.5 290.0 292.5
Test Performance

(b) Uval2B

Wang, S., Mei Y., Zhang, M. & Yao X. (2021). Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. IEEE Transactions on

Evolutionary Computation.
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Ensemble GP

e “Two heads are better than one”

A group of simple GP rules can make the same/better decisions than a single
complex GP rule

e Simple and reasonably good rules
-] -]
e Mutually complementary u =
ma -]
bc] [cTD) [+ ] [cm) [CTD] [ma] [cFi] [TD)]
IDC| |CFH| [cTD| [CFH]| | - | [CFH| [CFR1] [CFH]
7]
[CFR1| [CFH| [CTD| [CFH] [CFR1] [CFH] [CTD] [CFH]




Ensemble GP

* How to evolve the simple, reasonably good, and complementary GP rules?

* Ensemble learning methods: bagging, boosting
» Cooperative co-evolution: the context vector is a group of rules

* Bagging GP
* Divide GP into multiple cycles, each cycle evolves one rule
» Used different training subset in each cycle
* Limitation: GP is slow to get each rule

* Boosting GP
* Learn each rule sequentially, using the same training set
e Adjust the weight of each training sample

* fit(x) = Xsetrain W(S) * te(x, S)
* Limitation: GP is slow to get each rule, cannot use large training set, poor generalization

* CCGP

e Co-evolve each rule in a sub-population, use context vector to evaluate fitness

* Limitation: hard to consider complementary
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Ensemble GP

* Empirical comparison for evolving routing policies (output the priority of each customer)

* 5rules (5 x 200 for CCGP), 5 training samples
* Depth =4 (simple enough)
* Aggregation: sum up the outputs of the rules

* BaggingGP and Boosting GP are very poor

» CCGP is good mw

* No worse performance size size size size
* Smaller size per tree ugdb1 367.8 119 397.1 12.2 399.4 12.9 364.9 5.2
ugdb2 386.1 119 424.9 12.8 433.0 12.2 372.3 6.7
ugdb8 485.0 12.8 548.7 12.2 568.9 13.1 467.7 6.9
ugdb23 255.5 124 266.4 12.7 268.8 12.7 256.0 5.6
uval9A 348.0 13.1 374.0 12.2 375.9 12.9 341.3 7.6
uvaloD 501.1 13.5 561.4 11.8 542.2 12.1 490.4 7.4
uvall0A 444 .4 11.8 475.2 11.8 471.9 12.1 445.2 6.9
uvall10D 641.7 13.1 693.9 12.9 685.2 12.6 649.1 6.7

Wang, S., Mei, Y., Park, J., & Zhang, M. (2019, December). Evolving ensembles of routing policies using genetic programming for uncertain
capacitated arc routing problem. In 2019 IEEE SSCI (pp. 1628-1635). IEEE. 94



Ensemble GP

* However, CCGP cannot guarantee that the rules are complementary
* One rule can dominate the decision of the ensemble
e Diversity may not be enough

* Consider niching to maintain diversity
* DivNichGP

* Asingle population with different niches
» Different niches tend to complement each other
* No need to pre-define the number of rules (depends on number of niches)

Pool size 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56

Rank inrpl O O O O OO OO OOOOOOOOOO0O
Rankinrp2 0O 0 0 0120 0 0 O OO OOOOOOTO
Rank inp3 7 243061 0 774131 0 3130 0 0 413952 0 13 14
Rank inrp4 7 163422 0 563927 0 1724 0 0 405353 0 18 14
Rankinrp5 9 174242 1 775354666766 1 2 5 7 6 7 0 9

Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101). 95



Ensemble GP

» Use clearing to construct niches

* In each niche, only k best individuals are retained, others are set to very bad fitness
* Use phenotypic distance

 Ensemble selection Initialisation

 Sort final individuals by fitness '

o i »| Fitness evaluation
Include them one by one into the ensemble by Clearing —

Behaviour 2
2

» Stop if the ensemble cannot improve

v - . p
Selection L o®

[ 3
(]

A
Breeding

»

______________ | Behaviour 1'

No Yes Select
ensemble

Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101).
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Ensemble GP

* Test on evolving UCARP routing policies
» SimpleGP has max depth of 8, CCGP and DivNichGP have max depth of 4
* DivNichGP has much better performance and size

mm ccep m

size size size

ugdbl 354.8 75.7 364.9 5.2 348.4 21.3

ugdb2 377.1 68.3 372.3 6.7 364.8 21.4

ugdb8 499.8 67.5 467.7 6.9 467.4 23.4

ugdb23 252.1 68.3 256.0 5.6 250.9 19.9
uval9A 340.3 65.3 341.3 7.6 3334 21.5

uvaloD 478.3 68.3 490.4 7.4 504.5 25.1

uvall0A 440.6 58.1 445.2 6.9 439.4 21.6
uvall0D 630.2 65.7 649.1 6.7 636.8 24.8

Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101).



Ensemble GP

* Ensemble size varies for different instances

* DivNichGP has better complementary (none of the rules dominates the decisions)

* Rules easier to interpret

ugdbl
ugdb2
ugdb8
ugdb23
uval9A
uvaloD
uvall0A
uvall0D

5.7
9.2
1.6
7.2
8.9
1.2
6.0
1.8

A good ensemble for ugdb1

DMS 1 2 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20
rpp 2100000000 1 0 1 0 0 1 0 0 0 0
rp, 00 000000O0O0 O O 0 0 0 1 0 0 0 0
rp; 1100000000 0 0 1 0 0 0 0 0 0 0
rpg 1001030003 1 0 1 0 0 0 0 0 2 0
rps 76 31232220 1 0 1 0 0 1 0 0 0 1
e 1101010010 0 0 1 0 4 0 3 0 0 1
rp, 1101000010 0 0 1 0 0 1 0 0 0 1
CFH
rp1 = max{DEM1, CFH} * (SC + CTD) * — min{RQ, 0.32} ],
DC
in{CFH, DC} * CTD De
rp2 = min * - —
P ’ min{CFH, DC}’

CFH
rp3 = max{FRT, CFH} * DEM * CTD = ( ~

— min{FUT, 0.32}) :

Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing

problem. In Proceedings of GECCO (pp. 1093-1101).
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GP for Decision Tree Induction

* (Shallow/Small) decision tree is a class of easy-to-interpret models

e Conventional DT learning algorithms (ID3, C4.5, ...) are mainly greedy local
search

* Use GP to automatically induce decision trees by more global search

e Each attribute/feature is a function

» #children = #possible values of the feature
* Nominal features (discretize the features)

OUTLOOK

SUNNY OVERCAST \\RAIN
* Terminal set: class names

* Function set: feature tests HUMIDITY WINDY

A

Koza, John R. "Concept formation and decision tree induction using the genetic programming paradigm." International Conference on
Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1990. 99



GP for Decision Tree Induction

 Grammar-based GP (BNF) grammar

<Tree> ::= “if-then-else” <Cond><Tree><Tree> | Class
<Cond> ::= <Cond> “And” <Cond> | <Cond> “Or” <Cond> |

“Not” <Cond> | Variable <RelationOperation> Threshold
<RelationOperation> ::= “>7 | u“<# | “=#

e Variable is a feature

 Threshold is a real number

Li, J., Li, X., & Yao, X. (2005, September). Cost-sensitive classification with genetic programming. In 2005 IEEE congress on evolutionary
computation (Vol. 3, pp. 2114-2121). IEEE.



GP for Decision Tree Induction

» Use strongly typed GP to generate valid DTs (All continuous features)

* Three types
* Variable: Int[0, #features-1], access the value of a feature, ONLY terminals have this type.
» Constant: Double[-10,10], coefficient/weight, ONLY terminals have this type.
* Classification: Int[0, #classes-1], predict the class, BOTH terminals and functions have this type.

Terminal set Variable, Constant, Classification 29%10-3.0x 4 <=2.1
CheckCondition1Var,

Function set CheckCondition2Vars,
CheckCondition3Vars

O @)
CheckCondition1Var
Constant e s
Threshold Classification
Variable

Classification

Bot, M. C., & Langdon, W. B. (2000, April). Application of genetic programming to induction of linear classification trees. In European
Conference on Genetic Programming (pp. 247-258). Springer, Berlin, Heidelberg. 101



GP for Decision Tree Induction

 Strongly typed GP, both continuous and nominal features (binary classification)

e Terminals include
* Features: integer, index of the feature
* Values: real [0,1), threshold for a numerical feature, or the index of the nominal feature value
* Class: binary, leaf nodes of the tree

* Function node: integer x real x binary x binary -> binary

L, if Xfeqrure < (u — 1) * value + 1,

* If feature is numeric with the range [, u], then out = ,
R, otherwise

Lif Xfeature = V|k+value|»
R, otherwise

* If feature is nominal taking from {V, ..., V}.}, then out = {

Type Terminal Function

Integer Feature

Real Value

Binar Class Node L '
4 feature | 1 value

Zhao, Huimin. "A multi-objective genetic programming approach to developing Pareto optimal decision trees." Decision Support Systems
43.3 (2007): 809-826.



GP for Decision Tree Induction

* Example
* Pregis feature 1 ()

e Skin is feature 4 w01 () ®
 Mass is feature 6

Zhao, Huimin. "A multi-objective genetic programming approach to developing Pareto optimal decision trees." Decision Support Systems
43.3 (2007): 809-826. 103



GP for Decision Tree Induction

* GP crossover and mutation

e Standard tree-based crossover: swap two random sub-trees of the parents

e Standard tree-based mutation: randomly select a sub-tree of the parent, and replace with a
newly generated sub-tree

(D (D
040} () () fod0} () ()
[2Jors [0 ]() [2Jos} [0] () (2 fozifo]() [2Joso} [o] ()
Glos! QL] Eles () [ Glss O] e ()
CJesifol] il O O s faoi o)1) [fosi O O
sl (O Q Eewl [0 O oz (O 0] EFesit O
4 Joo6i[1 J[o][7 o171 ][ o] [7Jooei[o ][ 1 3foi7i[1][0 7 Jo20% [0 ][4

Zhao, Huimin. "A multi-objective genetic programming approach to developing Pareto optimal decision trees." Decision Support Systems
43.3 (2007): 809-826. 104



GP for Post-hoc Global Interpretability

* Use GP to evolve a decision tree to approximate a black-box ML model
* Multi-objective GP

. H HH Evoluti
* F1: reconstruction ability (max F1-score) . voltion
* F2:interpretability (#split points) Tran Data_| ; [ Random Inttalisation |
Y X Original Train X = | v
Evaluate objectives
 Strongly-typed GP . o
_Yes ____ 50 generations
: reached?
Colour Black-box :
OEEN (Y | Predicted Train Y | ; Y No
: \ 4
Red Green I Non-dominated Sorting ‘
Radius >=4 Seeds > 1 [ Selection ]
< >= <= > | Apply Genetic Operators l
’ Cherry ’ Apple Avocado Bey | :
False | True l '
Kiwifruit Grape Pareto Front of Interpretable Models
Evans, B. P., Xue, B., & Zhang, M. (2019, July). What's inside the black-box? a genetic programming method for interpreting complex 105

machine learning models. In Proceedings of GECCO (pp. 1012-1020).



GP for Post-hoc Global Interpretability

* Better trade-off between accuracy and interpretability
* Has potential to further improve reconstruction ability (f1-socre)

(€92 <=410826

True/ False
748

R AR

e oé%db SRR FER,
/ (c) Decision Tree (f; = 0.790)
co<= 10t @ IF (X43 = 3) AND (X78 = 3) THEN: Class1

/ ELSE IF (X62 =0) THEN: Class1
(a) Proposed (fi = 0.757) ELSE DEFAULT: Classt
94 <=11533

i i (d) Bayesian Rule List (f; = 0.704)

(b) Simplified Decision Tree
(fl = 0.759)

Evans, B. P., Xue, B., & Zhang, M. (2019, July). What's inside the black-box? a genetic programming method for interpreting complex

106
machine learning models. In Proceedings of GECCO (pp. 1012-1020).



GP for Post-hoc Local Interpretability

* Given an input of a complex pre-trained ML model: x € R™

1) Generate m sample points around the input x from a multivariate Gaussian distribution
N (x,I,,X0), called noise setn

2) Find an explainer model which is easy to interpret, and can mimic the behavior of the original
complex model

3) Use GP to evolve the explainer model, to minimize the RMSE between the GP model and the
complex pre-trained ML model

Xo + x4 +9.558

21 N
\ °
o .
o
Input to be > o od° oo ©
explained 0 e ® o
> ‘. . ° %
> - o
4/ ,,»’Pt*& 0o
. ’ > » ’ ‘
B > O s
» 7o
» » ® o
-y B > 2o e
>
- >
-125 -100 -75 -50 -25 00 2.5 ~14 -12 -10 -8 -6
Dataset with 1500 samples, 2 features, Noise set with 100 samples around the input, the prediction of
3 classes the pre-trained complex model and the GP explainer model

Ferreira et al. (2020) Applying Genetic Programming to Improve Interpretability in Machine Learning Models. arXiv 107



GP for Post-hoc Local Interpretability

 Explain the pre-trained Random Forest, DNN, SVM/R models
* Compared with Lime and Decision Tree explainers
» Better overall error on the tested classification and regression problems

Explainer Average Error Std Dev
Lime 7.577 36.913
DT 0.083 0.329
GPX 0.065 0.508

* Example: Boston regression dataset

2
xptratioxnox

28.390
Xindus

Xistat
Pupil-teacher ratio by town is important in both cases

* One input point: GPX model is

Another input point: GPX model is + Xptratio

Different regions could have different criteria

Ferreira et al. (2020) Applying Genetic Programming to Improve Interpretability in Machine Learning Models. arXiv



GP with Visualisation

* Manifold learning: learn a mapping from high-dimensional data to much lower-
dimensional (e.g. 2 or 3) data that can be visualised

* PCA (linear), MDS (non-linear), t-SNE (non-linear)

* The state-of-the-art manifold learning methods are not interpretable
* No mapping back to the original features, transformation is opaque

* GP-Mal: a multi-tree GP, each tree representing one transformed dimension
* Terminal set: the scaled input features, random constant
* Function set:

Category Arithmetic Non-Linear Conditional

Function - X 5+  Sigmoid ReLU Max Min If
No. of Inputs 2 2 5) 1 1 2 2 3
No. of Outputs 1 1 1 1 1 1 1 1

* Fitness function:
* Preserving neighbourhood in the low-dimensional space

1
fitness = ﬁz similarity(N;, N{)
Tex

similarity(N,N") = Z agreement(|pos(a, N) — pos(a,N')|)

aeN

Lensen, A., Xue, B., & Zhang, M. (2019, April). Can genetic programming do manifold learning too?. In EuroGP (pp. 114-130). Springer, Cham. 109



GP with Visualisation

* Can achieve better data separation (higher accuracy) on some datasets

e Can potentially interpret the trees (they are symbolic)

Dermatology dataset

(a) GP-MaL (b) PCA (c) MDS

000000

000000

——————

(d) LLE (e) tSNE

Lensen, A., Xue, B., & Zhang, M. (2019, April). Can genetic programming do manifold learning too?. In EuroGP (pp. 114-130). Springer, Cham.

(a)

(b)
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GP with Visualisation

 T-distributed stochastic neighbour embedding (t-SNE) is a powerful manifold
learning / dimensionality reduction method

* However, how t-SNE creates the visualisation from original features is opaque
* GP-tSNE: Multi-objective Multi-tree GP (MODA/D)

e Terminal set: the features, mean of each feature and its 3 nearest neighbours, constants
* Function set: similar as GP-MaL

* Fitness function: - * x’sarein high-dimensional space
* F1:t-SNE based: KL(P||Q) = X; X; pij logq—Z_ * y’sareinlow-dimensional space
2
Bl ) 271
P = eXp< 207 _ Pij*Djli _ (”“yi‘yf” )
Jjit = 2\r P T T Mg T 2\~ 1
X1, —X 1 —
S exp(_“ k2621|| ) Siat( 1+ 17r-v1l[)
L

* F2: model complexity, count the number of nodes in the tree

Lensen et al. (2020) Genetic Programming for Evolving a Front of Interpretable Models for Data Visualization, IEEE Transactions on Cybernetics 111



GP with Visualisation
 Better results than GP-Mal, although may not be as good as t-SNE

mple 2) Cost: 0.9121 Complexity: 78 (Max) Cost: 0.7387 Complexity: 2153

imple 2) Cost: 0.1482 Complexity: 34 (Max) Cost: 0.1070 Complexity: 1923
h fo .
<,
P . 3 ¢
: ' %% : 3 . %
- t: ‘l .: " :\O e
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s . . ced »° .‘.. ..,-‘
(e) (H) ®
(t-SNE) Cost: 0.1048 (GP-MaL) Cost: 0.3615 (t-SNE) Cost: 0.5534 (GP-MaL) Cost: 1.9922
o ¢ ® o m . . « .
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(2) (h) (2 (h)

Lensen et al. (2020) Genetic Programming for Evolving a Front of Interpretable Models for Data Visualization, IEEE Transactions on Cybernetics
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GP with Visualisation

e Good balance between cost and interpretability

Cost: 0.9252 Complexity: 19

* 0.
.
[ -": ..‘..
t 34 »
Foems: Mo ) 1!.!.
** M : M
b oe 0 e ot ' .
Tttt L. T lel P e 2
LN . DTN el ot g
N :,.'«'ag.':. ., *ed I .x...s;“; teNate C
- g . LTI s f: .

Lensen et al. (2020) Genetic Programming for Evolving a Front of Interpretable Models for Data Visualization, IEEE Transactions on Cybernetics 113



Visualising GP Process

* It is important to understand how the population evolves during the GP process

* Visualise the phenotypic representation using Growing Neural Gas Network

~

Initialization

Evaluation

Genetic
Operators

Selection

GP

™~

/

Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research

-——— - —— -y

e

.

Update Dataset

Dimensionality
Reduction

Growing
Neural Gas

Node Coloring
and Labeling

-

Visualization

~

@
© @
~

Priority = —[d — (t + RT)]
-> Priority = -[Due Date — (Current Time + Remaining Processing Time)]

103

CFH

DEM

SC

Tasks| Task Attributes |Ranking|Charact- |
in Q|CFH DEM SC |by Rule |erisation !
Q9| 5 2 8 2 5 '
Q@ 9 2 3 1 x
Qo115 9 8 1 |
Qoo | 3 16 2

Q3] 6 4 9 3

Qszo| 7 5 | 2 3
933 | 2 2 1

frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.
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Visualising GP Process

* Tree-based GP (80% crossover, 15% mutation)

e Starts to show trend at gen 10
* Quick converge since gen 20

Gen1

%
4&5‘7'\ SN
2 (‘szw
A\Vi“

Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research

115
frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.



Visualising GP Process

* Tree-based GP (15% crossover, 80% mutation)
* Slower convergence

* Still exploring at gen 30
* Finally converge

* Higher mutation

* Higher exploration

Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research

116
frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.



Visualising GP Process

* Can also see how the population moves
* Can observe phenotypic and fitness diversity

- .7-"', | - - %
TGP (80% crossover) TGP (15% crossover) & N
: NG
—. i f\,-i;';f.i o
¢ ) Subpopulation 0 « NN
: 2 I | R A Subpopulation 1 A<
/ / ~ { @ 75 )
® y " °
a — ‘ @
| ® { g
09 o
| e o \
s ® K
Darker nodes have better fitness
Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research 117

frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.



Linear GP

* Linear program, very similar to the real program, so easier to understand

* Test on bioinformatics: Metabolomics Data for Osteoarthritis

e 167 features in total

C3-DG (€4-0OH)
°
c3 PC ad€32:1
° L]
101
PC ag 042:3
lysoPCla C16:1 PC ag €44:3
PC aaC40:1
PC ag@aa:1 PC ae C40:6 .
SmRo:2 Sargosine
total DMA 102
100
lysoPGIAC 18:0 Cc81D0
SM (OH)IC24}1 o PC adC24:0 pC adlC40:4
PC ae C42:5 PC ae C38:0 cs5 PC aéC36:3
c4 c18
Leu c5:1 PC de C38:2
Thr
C16:2-0H
c16
Kynurenine,
a6 Taurine Arg
PC a@ £32:1 TysoPC a C20:3
PC ae C42:2
.- CB.(G4:1-DC)
14:1- PC 0422 SMmic16:1
Asn
PC adiC34:0 Gl
ae PC de Cdz:a O PCaEC38:4 e
aa ¢
05:D (G6-OH) Nifro-Tye
PC aa C38:5

PC adC40:1 PC aa C32:3

T His € adle420 PC a@ 402 c102  Pro c12
c10 A&Orn
PC ae C40:5 lle
H1
c18:1
PC aé C44:5
lysoPCla C24:0
PC a8 042:6 PC a@30:1

I1: if r[1]l> rI[3]

I2: then r[0] = r[2]
I3: <r[4] = r[2] / r[O]
I4: if r[0] > 4

I5: then if r[3] < 10
I6: then r[5]
I7: r[4] ri4] = r[l]
I8: r[0] r[5] + r[4]

+ 0.5

r[3] - r[4]

Number of best models

(@)

200

-
o
o

=
o
=]

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 10 20 30 40 50 60 70
Fitness (MCE) Number of effective features

Hu, Ting. "Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics?." Genetic Programming Theory and Practice XVII.

Springer, Cham, 2020. 63-77.
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Outline

* Introduction to XAl
* Introduction to GP
* Better Interpretability Through GP
* Challenges and Future Directions
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Challenges and Future Directions

* Measures of Interpretability
* Why (How much) is A more interpretable/explainable than B? — subjective
e Questionnaire/Interview?

* Forms of interpretability, e.g., contrastive: why event P happened instead of
another event Q?

* Cross-disciplinary: understand interpretability

* Cognitive science
 Social science
* Psychology

* Tradeoff between Interpretability and Accuracy

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence, 267, 1-38.



Conclusions

* Interpretable Al Techniques
* Intrinsic interpretability
* Post-hoc explanation

* Global Interpretation: interpret the whole model
* Local Interpretation: interpret for a specific instance

* GP has a great potential for XAl
e Symbolic + computational
* Flexible representation
* Multi-objective



