
Towards Better Explainable AI Through
Genetic Programming

Dr. Yi Mei
yi.mei@ecs.vuw.ac.nz

Evolutionary Computation Research Group
Victoria University of Wellington

Wellington, New Zealand

2021 IEEE Congress on Evolutionary Computation Tutorial

1

Outline
• Introduction to Explainable AI (XAI)
• Introduction to Genetic Programming (GP)
• Better Interpretability Through GP
• Challenges and Future Directions

2

Outline
• Introduction to Explainable AI (XAI)
• Introduction to Genetic Programming (GP)
• Better Interpretability Through GP
• Challenges and Future Directions

3

Why Interpretability in AI
• Early logical and symbolic AI systems

• Expert systems, manually design the logic and rules
• Easy to understand and explain
• Not effective enough, brittle against real-world complex problems

• Recent AI successes
• Machine learning, deep learning, automatically learn relationships
• High performance, but too complex and opaque

4Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58.

Why Interpretability in AI
• Identify “Clever Hans” Predictors
• Enhance Trust and Confidence from Users
• Provide New Insights (AlphaGo)
• Legislation

• EU’s General Data Protection Regulation (GDPR)
requires the ML model to be able to be explained

5

Samek, W., & Müller, K. R. (2019). Towards explainable artificial intelligence. In Explainable AI: interpreting, explaining and visualizing deep
learning (pp. 5-22). Springer, Cham.

Ribeiro et al. 2016

Learning Performance vs Explainability
• There is a trade-off between performance and explainability

• Deep learning: very good performance, but hard to explain
• Decision tree: relatively easy to explain, but not as effective

6Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58.

Improve the Trade-Off by XAI
• Deep explanation: Modify DL methods to learn more explainable features or representations

• Interpretable Models: Techniques to learn more structured, interpretable or causal models
• Model Induction: Techniques that infer an approximate explainable model for a complex model,

analysing the input-output behaviour of a black box model

7Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58.

XAI Concept
• Current AI vs XAI

• XAI enables users to understand the system’s overall strengths and weaknesses, how it will
behave in future, perhaps correct its mistakes

8Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58.

Techniques for Interpretable ML
• Intrinsic interpretability (Global and Local)

• Constructing self-explanatory models, such as decision tree, rule-based model, linear model, …

• Post-hoc interpretability (Global and Local)
• Creating a second (interpretable) model to provide explanations for an existing (black-box) model

• Global interpretability: understand the overall model structure/behaviour

• Local interpretability: understand how/why the model makes one prediction/decision

9Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77.

Intrinsic Global Interpretability
• Train self-explanatory models directly

• Linear models
• Rule-based systems
• Decision trees
• Genetic programs (Syntax trees/graphs, …)

• Add interpretability constraints
• Number of features used in the model
• The used features must have monotonic relations with the prediction
• Trade-off between accuracy and interpretability

• Multi-objective training
• Accuracy and interpretability metrics
• Number of features used
• Model complexity
• …

10Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77.

Intrinsic Local Interpretability
• Example: Employ attention mechanism in RNNs

• Learn to describe the content of images: caption generation

• Visualise the attention weight matrix for each individual prediction

11Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption
generation with visual attention. In International conference on machine learning (pp. 2048-2057). PMLR.

Intrinsic Local Interpretability
• The attention can tell which mistakes the model made

12Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption
generation with visual attention. In International conference on machine learning (pp. 2048-2057). PMLR.

Post-Hoc Interpretability
• Model-Specific

• Designed for some specific model, e.g., deep learning

• Model-Agnostic
• Can interpret/explain ANY model
• Model simplification
• Feature relevance/importance
• Visualisation

13

Post-Hoc Global Interpretability
• DNN-specific explanation

• Visualisation for class labels: generate a fake image 𝐼
• 𝐼 = argmax

(
𝑆* 𝐼 − 𝜆 𝐼 -

-
, where 𝑆*(𝐼) is the score of class 𝑐 by the classification layer

14Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Post-Hoc Global Interpretability
• Use the input-output data predicted by the black-box model
• Train a simple model (e.g., decision tree, rules)
• Model Agnostic

• E.g., Use a decision tree to approximate
• Can get promising accuracy – even better than the baseline
• Cart pole policy explained by the decision tree:

• To the right if (pole velocity ≥ −0.286) ∧ (pole angle ≥ −0.071)

15Bastani, O., Kim, C., & Bastani, H. (2017). Interpretability via model extraction. arXiv preprint arXiv:1706.09773.

Post-Hoc Global Interpretability
• Permutation feature importance (Model Agnostic)

1. Calculate the baseline accuracy of the model on test dataset
2. Permute the values of a feature on the test set, calculate the new accuracy on the modified dataset
3. Repeat the permutation for all features, set the feature importance score as the accuracy reduction

16Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. Communications of the ACM, 63(1), 68-77.

• Wisconsin breast cancer data
• Random forest

Post-Hoc Local Interpretability
• DNN-specific explanation

• Simplify image:
• Segment the image, and remove each component until it is misclassified by the CNN

17Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2014). Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856.

Post-Hoc Local Interpretability
• DNN-specific explanation

• Grad-CAM: use gradient

18Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).

Post-Hoc Local Interpretability
• DNN-specific explanation

• Grad-CAM: show the important regions clearly

19Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).

Post-Hoc Local Interpretability
• DNN-specific explanation

• Learn a mask

• Loss function
• Regularisation (simply masks)
• Classification drop significantly with the mask

21Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In ICCV (pp. 3429-3437).

LIME for Post-Hoc Local Interpretability
• Model Agnostic: show which features were most important for the model to make the

decision
• Local fidelity vs interpretability: min

$∈&
ℒ 𝑓, 𝑔, 𝜋, + Ω(𝑔)

• 𝐺: class of linear models

• 𝜋1 𝑧 = 𝑒2
5 6,7 8

98

• ℒ 𝑓, 𝑔, 𝜋1 = ∑3,3;∈𝒵 𝜋1 𝑧 𝑓 𝑧 − 𝑔 𝑧7
-

• Ω 𝑔 is the task-specific interpretability measure (e.g., limiting number of words in text mining,
number of super-pixels in image processing)

24Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should I trust you?" Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).

LIME for Post-Hoc Local Interpretability
• Use K-Lasso to get the top k most

important features
• Can show interpretable super-pixels

contributing to the prediction

25Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should I trust you?" Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).

Outline
• Introduction to XAI
• Introduction to GP
• Better Interpretability Through GP
• Challenges and Future Directions

30

Genetic Programming (GP)
• A type of evolutionary algorithm

• Evolve computer programs rather than solutions

• Representation of computer programs
• Tree-like, graph-like, linear, …

31

while b ≠ 0
if a > b
a := a − b

else
b := b − a

return a

max 𝑥 ∗ 𝑦, 𝑥 ∗ 𝑦 + 3

r[3] = r[1] / 1.3;
r[1] = r[2] * -5.5;
r[0] = sqrt(10);
r[3] = r[1] + r[1];
r[1] = log(r[3]);
r[1] = r[3] >= r[0];
r[0] = abs(r[2]);
r[0] = if r[1] < 0 then

r[0] else r[3];

Genetic Programming (GP)
• Individual generation (Tree-based representation)

• Terminal set: inputs of the program and constants, no argument, form the leaf nodes,
• Function set: operators to the inputs and intermediate results of the program (e.g. +, -, max, …),

form the non-leaf nodes

• Start from the root node
• For each node, randomly sample from the terminal/function set

• If sampling from the terminal set, then stop this branch
• If sampling from the function set, create the child nodes, and recursively sample the child

nodes

32

Terminals Functions

x +

y -

1 *

/

+

*

x 1

y

𝑥 ∗ 1 + 𝑦

Genetic Programming (GP)
• Sufficiency and Closure for success of GP

• Criteria for selecting the terminal and function sets

• Sufficiency: There must be some combination of terminals and function symbols
that can solve the problem
• If the target program is to calculate log 𝑥 + 28, but the function set is {+,−,∗,/}, then not

sufficient

• Closure: Any function can accept any input value returned by any function (and
any terminal).
• If the function set includes 𝐴𝑁𝐷(𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛) and +, then not closure, since we may

have 𝐴𝑁𝐷 taking the real-value inputs.

33

Genetic Programming (GP)
• GP genetic (Crossover/Mutation) operators depends on representation

34

GP vs GA

35

GP for Symbolic Regression
• In real world, the relationship structure between variables are usually unknown
• Symbolic regression is to learn both the model structure and coefficients

• Can be very helpful for natural law discovery

36Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. science, 324(5923), 81-85.

GP for Symbolic Regression
• Given a set of training data 𝑥", 𝑥$, … , 𝑥&, 𝑦

• Define terminal set {𝑥9, 𝑥-, … , 𝑥: , 𝑤}
• Define function set {+,−,∗,/, log, … }
• Define the fitness function

• Mean squared error ∑! 𝑔𝑝 𝑥! − 𝑦! "

• Can consider regularisation (generalisation performance)

• Initialisation
• Use the program generation (grow, full, ramp-half-and-half)

• Breeding
• Elitism: select the top individuals directly
• Tournament selection to select parents
• Tree-based crossover and mutation, reproduction
• Directly copy the generated offspring to the next population

37

x y

1 0.8

2 3.8

3 8.8

… …

GP for (Binary) Classification
• Given a set of training data (feature vector and class label)
• Evolve GP program in the same way as regression
• Translate the final real-valued output into class prediction

38

GP for Learning Decision Making Policy
• Dispatching rules in job shop scheduling

• When a machine becomes idle, select the next job in the queue
• E.g. first-come-first-serve, shortest processing time, …

• Routing policy in vehicle routing
• When a vehicle becomes idle, select the next customer to serve
• E.g. nearest neighbour, path scanning, saving, …

• Use GP to learn a priority function of the candidates (jobs, customers, …)
• Calculate the priority of the candidates
• Select the next candidate based on priority

39

GP for Learning Decision Making Policy
• Given a set of training data (problem instances)

• Define terminal set: the state attributes/features, constants
• Define function set: {+,−,∗,/, log, max,min, … }
• Define the fitness function

• For each training instance, run a simulation (meta-algorithm) using this GP rule, get a solution to the
instance

• Calculate the objective value of the obtained solution
• Fitness can be set to the average normalised objective value of the solutions

40

Outline
• Introduction to XAI
• Introduction to GP
• Better Interpretability Through GP
• Challenges and Future Directions

41

Learning Performance vs Explainability with GP

42

Better Interpretability Through GP
• Improve the interpretability of GP-evolved models

• Consider model size (e.g., number of nodes): bloat control
• Consider number of features used in the model: feature selection
• Consider model complexity (e.g., non-linear operators are more complex)
• Consider physical meanings (e.g., time cannot be added with length)

• Constrained GP (penalise less interpretable models)
• Multi-objective GP (accuracy vs interpretability measures)
• Simplification (e.g., tree pruning)
• Different GP representations (e.g., strongly-typed, grammar-guided, ensemble/multi-tree)
• Visualisation

• Use GP to interpret other complex models
• Post-hoc local interpretability
• Visualisation

43

Accuracy vs Model Size: Bloat Control
• Tarpeian Method (Penalisation): if an individual is too large (above average size),

then assign a very bad fitness to it
• Parsimony Pressure

• Linear: 𝑓𝑖𝑡 = 𝑜𝑏𝑗 + 𝛼 ∗ 𝑠𝑖𝑧𝑒
• Lexicographic: divide the individuals into different buckets based on fitness, and select the

individuals first based on the rank of bucket, second based on size

• Double Tournament
• First tournament selects candidates based on fitness
• Second tournament selects the parent from the first tournament winners based on size

• Waiting room
• Operator equalisation

• Try to make a flat distribution of program size, reduce crossover bias

• …

44
Luke, S., & Panait, L. (2006). A comparison of bloat control methods for genetic programming. Evolutionary Computation, 14(3), 309-344.

Multi-Objective GP with 𝛼-dominance
• It is hard to balance effectiveness (e.g., accuracy) and size during the MOGP

search
• If not evolve properly, the population can be easily biased to small but bad

individuals, and lose exploration ability
• Use 𝛼-dominance to adjust the balance between effectiveness and size

• 𝛼 = 0: normal dominance relationship
• 𝛼 = ∞: single objective with only effectiveness

45
Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

Multi-Objective GP with 𝛼-dominance
• Test on uncertain arc routing, to evolve routing policies
• Use NSGA-II + GP
• Different 𝛼 adaptation schemes

• Linear: gradually shift from effectiveness to size
• Sigmoid: focus on effectiveness first, then quickly shift to size
• Cosine: focus on effectiveness first, shift to size, then back to effectiveness, and back and forth

46
Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

Multi-Objective GP with 𝛼-dominance
• Much better than normal MOEAs
• The sigmoid adaptation seems better than linear and cosine

47
Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

Instance NSGA-II SPEA2 𝜶-MOGP-l 𝜶-MOGP-s 𝜶-MOGP-c

ugdb1 0.9071 0.8645 0.9389 0.9427 0.9423

ugdb2 0.9153 0.8894 0.9395 0.9572 0.9423

ugdb8 0.9142 0.8625 0.9404 0.9505 0.9427

ugdb23 0.8889 0.8738 0.9295 0.9416 0.9341

uval9A 0.9756 0.9577 0.9781 0.9853 0.9811

uval9D 0.9190 0.8528 0.9393 0.9581 0.9480

uval10A 0.9736 0.9534 0.9832 0.9905 0.9859

uval10D 0.9302 0.8986 0.9518 0.9724 0.9630

HV value

𝑅𝑃 = max 𝑆_, 𝑆` ,
𝑆_ = 𝐷𝐶 ∗ 𝐶𝐹𝐻 + 𝐶𝑇𝑇1,
𝑆` =

efg_
ehihjk

.

Multi-Objective GP with 𝛼-dominance
• Select the most effective rule from the Pareto front, compare its effectiveness and size

• Traditional MOEAs biased too much to the small but bad individuals
• 𝜶-MOGP can obtain similar effectiveness with much smaller size

48
Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

Instance SO-GP NSGA-II SPEA2 𝜶-MOGP-s

tc size tc size tc size tc size

ugdb1 355.47 74.6 373.2 10.0 389.15 8.4 358.4 17.33

ugdb2 371.72 71.93 392.8 6.93 404.08 5.73 370.8 26.53

ugdb8 463.34 65.47 476.3 7.07 509.82 5.6 448.9 30.87

ugdb23 252.47 71.8 260.2 8.27 262.35 8.6 252.0 33.07

uval9A 335.13 56.93 351.3 9.73 371.24 8.53 336.4 26.07

uval9D 478.14 69.27 522.7 10.33 586.58 7.53 479.3 37.0

uval10A 439.41 60.47 460.0 8.07 481.59 4.53 440.9 15.73

uval10D 620.91 65.33 668.9 8.93 699.8 9.2 622.2 34.13

Multi-Objective GP with 𝛼-dominance
• Learn to adjust the 𝛼 value online, rather than setting it manually

• If there are many small but bad individuals in the population, increase 𝛼
• If there are many large individuals in the population, decrease 𝛼

• Calculate the boundaries found so far
• 𝑢#$$ and 𝑙#$$ for effectiveness
• 𝑢%!&# and 𝑙%!&# for size
• Find the current pareto front
• Calculate its average 𝑎𝑣𝑔#$$ and 𝑎𝑣𝑔%!&#

49
Wang, S., Mei, Y., & Zhang, M. (2020, July). A multi-objective genetic programming hyper-heuristic approach to uncertain capacitated arc
routing problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

𝑢#$$𝑙#$$

𝑢%!&#

𝑙%!&#

(𝑎𝑣𝑔#$$, 𝑎𝑣𝑔%!&#)If 𝑎𝑣𝑔#$$ <
'())*+())

"
and 𝑎𝑣𝑔%!&# >

',-.(*+,-.(
"

then
𝛼 = 𝛼 − Δ

If 𝑎𝑣𝑔#$$ >
'())*+())

"
and 𝑎𝑣𝑔%!&# <

',-.(*+,-.(
"

then
𝛼 = 𝛼 + Δ

Multi-Objective GP with 𝛼-dominance
• Better Pareto front on different instances

50
Wang, S., Mei, Y., & Zhang, M. (2021). A Multi-Objective Genetic Programming Approach with Self-Adaptive α Dominance to Uncertain
Capacitated Arc Routing Problem. In 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

Multi-Objective GP with 𝛼-dominance
• Select the most effective rule from the Pareto front, compare its effectiveness

and size
• Slightly better than 𝜶-MOGP
• Better than SO-GP and SPEA2
• Different 𝜶 adaptation for different instances

51

Instance SO-GP SPEA2 𝜶-MOGP 𝜶-MOGP-sa

tc size tc size tc size tc size

ugdb1 355.47 74.6 389.15 8.4 354.77 27.67 351.82 34.47

ugdb2 371.72 71.93 404.08 5.73 370.17 28.8 372.92 28.07

ugdb8 430.34 65.47 509.82 5.6 441.05 51.67 433.73 51.2

ugdb23 252.47 71.8 262.35 8.6 250.46 47.53 251.23 37.07

uval9A 335.13 56.93 371.24 8.53 336.03 28.4 333.87 32.27

uval9D 478.14 69.27 586.58 7.53 474.24 58.0 477.67 40.7

uval10A 439.41 60.47 481.59 4.53 440.51 19.27 438.18 25.8

uval10D 620.91 65.33 699.8 9.2 619.58 47.67 620.21 42.4

Wang, S., Mei, Y., & Zhang, M. (2021). A Multi-Objective Genetic Programming Approach with Self-Adaptive α Dominance to Uncertain
Capacitated Arc Routing Problem. In 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

GP with Feature Selection
• Reducing the number of used features in the final evolved GP model can

improve interpretability
• Although GP can naturally do feature selection, we may need stronger and

explicit feature selection for complex problems
• The key issue is to estimate the feature importance based on the information

collected during the GP process
• Offline
• Online

52

GP with Permutation Importance for Symbolic Regression
• Run GP to get a good model

• Best trained model in the run

• For each feature in the good model, do a permutation
test to calculate the feature importance
• 𝐹𝐼/01 𝑋2 , 𝐼3 = 𝐸𝑟𝑟456 𝐼3 −𝐸𝑟𝑟7/8(𝐼3)

• 𝐹𝐼%90 𝑋2 =
0:8- ;<=>? @A,<C,-

D/ F

• Select the features with large importance: 𝐹𝐼%90 𝑋2 > 0

• Run GP again with the selected features

53
Chen, Q., Zhang, M., & Xue, B. (2017). Feature selection to improve generalization of genetic programming for high-dimensional symbolic
regression. IEEE Transactions on Evolutionary Computation, 21(5), 792-806.

GP with Permutation Importance for Symbolic Regression
• Much better generalisation/test performance (since the models are simpler)
• Can select much fewer features than existing methods

54
Chen, Q., Zhang, M., & Xue, B. (2017). Feature selection to improve generalization of genetic programming for high-dimensional symbolic
regression. IEEE Transactions on Evolutionary Computation, 21(5), 792-806.

GP with Feature Selection for Learning Scheduling Rules
• Run GP for 30 times, collect 30 best GP rules
• For each feature of each best rule, do a permutation test (set the feature to 1)

• Calculate 𝑜𝑏𝑗 𝐼3 : run simulations of the training set using 𝐼3, calculate the objective values of the solutions
• Calculate 𝑜𝑏𝑗 𝐼3|𝑋2 = 1 : replace all 𝑋2 to be 1 in 𝐼3 and rerun the simulations
• 𝐹𝐼 𝑋2, 𝐼3 = 𝑜𝑏𝑗 𝐼3|𝑋2 = 1 − 𝑜𝑏𝑗(𝐼3)

• Select the features with 𝐹𝐼 𝑋l , 𝐼m > 0 for over 15 of the best GP rules
• Run GP again with the selected features

55

Fit(tree) = 0.9

1

Fit(tree|b=1) = 1.1

Contribution(b) = 0.2

Contribution(c) = 0
Contribution(d) = 0

80
85
90
95

100

1 2 3 4 5 6 7 8Av
g.

 F
it%

 R
el

. A
TC

Scenario

Min. Weighted Tardiness

All Attributes

Selected
Attributes

GP with Feature Selection for Learning Scheduling Rules
• Test on dynamic job shop scheduling problem

• Minimise mean weighted tardiness

• Much best test performance
• Selected 6 out of the 16 features

56
Yi Mei, Mengjie Zhang, Su Nguyen, "Feature Selection in Evolving Job Shop Dispatching Rules with Genetic Programming," Genetic and
Evolutionary Computation Conference (GECCO), Denver, USA, 2016.

Two-Stage GP with Feature Selection
• Many GP runs are need to collect the data for feature selection

• A diverse set of good GP models

• Speed up the process for data collection
• A single run rather than multiple runs (use niching to obtain a diverse set)
• Use surrogate (shorter simulations) to speed up evaluation

• Stage 1: run GP to get a diverse set of good models for feature selection
• Use surrogate evaluation and niching

• Feature selection using the diverse set of good GP models
• Permutation test

• Stage 2: run another GP with the selected features

57
Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for evolving job shop scheduling rules with genetic
programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 339-353.

Two-Stage GP with Feature Selection
• Test on dynamic job shop scheduling problem

• Minimise mean weighted tardiness
• Original simulation: 2500 jobs, 10 machines
• Surrogate simulation: 500 jobs, 5 machines

• Clearing for niching
• Calculate a behaviour vector for each individual
• Calculate distance between individuals based on their

behaviour vector
• For the individuals with the same behaviour vector, keep only

the best-fit one (set others to worst fitness)

58
Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for evolving job shop scheduling rules with genetic
programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 339-353.

Two-Stage GP with Feature Selection
• Mostly better than “All features”, no difference with “Best Feature Subset”
• Sometimes even better than the current “Best Feature Subset”
• Example selected set: {PT, NOPT, WINQ, NOINQ, W}

59
Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for evolving job shop scheduling rules with genetic
programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5), 339-353.

Two-Stage GP with Feature Selection
• Feature selection requires running GP to

collect the good GP rules
• The good GP rules were ONLY used for

calculating the feature importance, but
ignored in the GP with the selected
features
• Stage 1: run GP to get data for feature

selection and final population
• Niching and surrogate are used

• Stage 2: run another GP using the final
population (adapt the individuals)

60
Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic
flexible job-shop scheduling. IEEE Transactions on Cybernetics.

Two-Stage GP with Feature Selection
• Stage 2 individual adaptation: adapt “promising” individuals, re-initialize the remaining
• Use “knee point” to detect “promising” individuals
• Two adaptation strategies

• Replace the unselected features by 1
• Mimicking behaviour

• Randomly generate many individuals with the selected features
• For each promising final individual, replace with the newly generated individual with the most similar behaviour

61
Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic
flexible job-shop scheduling. IEEE Transactions on Cybernetics.

Two-Stage GP with Feature Selection
• Test on dynamic flexible job shop scheduling

• Cooperative Co-evolution GP to co-evolve routing and sequence rules

• Almost the same test performance
• Much smaller rule size and number of used features (mimic version)

62

Scenario CCGP CCGP2(mimic)

Fmax,0.85 7.13 5.20

Fmax,0.95 7.40 5.17

Fmean,0.85 6.57 3.70

Fmean,0.95 6.90 3.70

WFMean,0.85 6.53 4.00

WFMean,0.95 6.80 4.27

#features used in sequencing rule

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic
flexible job-shop scheduling. IEEE Transactions on Cybernetics.

Two-Stage GP with Feature Selection
• Example evolved rules are simpler

63
Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic
flexible job-shop scheduling. IEEE Transactions on Cybernetics.

Without feature selectionWith feature selection

GP with Model Complexity
• Different operators/functions have different complexities
• Multi-objective GP (effectiveness vs complexity)

64
Hein, Daniel, Steffen Udluft, and Thomas A. Runkler. "Interpretable policies for reinforcement learning by genetic programming." Engineering
Applications of Artificial Intelligence 76 (2018): 158-169.

Terminals 1

+, -, x 1

/ 2

AND, OR 4

Tanh, abs 4

If 5

Complexities

GP with Model Complexity
• Results on learning Mount Car policies

65
Hein, Daniel, Steffen Udluft, and Thomas A. Runkler. "Interpretable policies for reinforcement learning by genetic programming." Engineering
Applications of Artificial Intelligence 76 (2018): 158-169.

GP with Model Complexity
• Expressional complexity: total number of nodes in all the subtrees

• Prefer flatter trees rather than deeper trees
• Fewer nested functions

• Order of Nonlinearity complexity

66
Vladislavleva, E. J., Smits, G. F., & Den Hertog, D. (2008). Order of nonlinearity as a complexity measure for models generated by symbolic
regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation, 13(2), 333-349.

Node Complexity

Constant 0

Variable 1

𝑓 ∘ 𝑔 𝐶𝑜𝑚𝑝 𝑔 ∗ 𝑛q

𝑔_ + 𝑔` and 𝑔_ − 𝑔` max 𝐶𝑜𝑚𝑝 𝑔_ , 𝐶𝑜𝑚𝑝 𝑔`

𝑔_ ∗ 𝑔` 𝐶𝑜𝑚𝑝 𝑔_ + 𝐶𝑜𝑚𝑝(𝑔`)

𝑔_/𝑔` 𝐶𝑜𝑚𝑝 𝑔_ + 𝐶𝑜𝑚𝑝 𝑔` ∗ 𝑛rst

GP with Model Complexity
• Order of Nonlinearity complexity

• 𝑛; is the minimum degree of the Chebyshev polynomial approximation of 𝑓(⋅)
• 𝑛<=> is the minimum degree of the Chebyshev polynomial approximation of 1/𝑥 in its range

• Chebyshev polynomial approximation
• max
1∈?⊆[B,C]

𝑓 𝑥 − ∑=EF:29 𝑐=𝑇= 𝑥; 𝑎, 𝑏 ≤ 𝜖

• 𝑇= 𝑥; 𝑎, 𝑏 = 𝑇=
-12 CGB

C2B
• 𝑇= is the Chebyshev polynomial

67
Vladislavleva, E. J., Smits, G. F., & Den Hertog, D. (2008). Order of nonlinearity as a complexity measure for models generated by symbolic
regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation, 13(2), 333-349.

Node Complexity

𝑓 ∘ 𝑔 𝐶𝑜𝑚𝑝 𝑔 ∗ 𝑛q

𝑔_/𝑔` 𝐶𝑜𝑚𝑝 𝑔_ + 𝐶𝑜𝑚𝑝 𝑔` ∗ 𝑛rst

R(↵)  Remp(↵) +

s
1

N


h

✓
log

✓
2N

h

◆
+ 1

◆
� log

⇣⌘
4

⌘�

GP with Model Complexity
• Measure model complexity based on statistical learning theory

• VC dimension: the capacity (complexity, expressive power, richness, or flexibility) of a space of
functions that can be learned by a statistical classification algorithm.

• How many points this family of functions can shatter?

• Structural risk minimization as fitness

68
Chen, Q., Zhang, M., & Xue, B. (2018). Structural risk minimization-driven genetic programming for enhancing generalization in symbolic
regression. IEEE Transactions on Evolutionary Computation, 23(4), 703-717.

Training error VC dimension (empirically estimated)

GP with Model Complexity
• Among the best test error, more compact/interpretable model

69
Chen, Q., Zhang, M., & Xue, B. (2018). Structural risk minimization-driven genetic programming for enhancing generalization in symbolic
regression. IEEE Transactions on Evolutionary Computation, 23(4), 703-717.

Dimensionally-Aware GP
• The combination should be dimensionally consistent

• E.g. Time + Distance is meaningless

• Use grammar to keep dimensional consistency

70
Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent feature construction with constrained genetic programming for
experimental physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.

<start> ::= <E> | <A> | <F>
<E> ::= <E> + <E> | <E> - <E> | <E> * <F> | <E> / <F> |

sqrt(<E2>) | <termE>
<A> ::= <A> + <A> | <A> - <A> | <A> * <A> | Acos(<F>) |

Atan(<F>) | <termA>
<F> ::= <F> + <F> | <F> - <F> | <F> * <F> | <E> / <E> |

<A> / <A> | <F> / <F> | cos(<A>) | sin(<A>) |
tan(<A>) | <termF>

<E2> ::= <E2> + <E2> | <E2> - <E2> | <E2> * <F> |
<E2> / <F> | <E> * <E> | <termE2>

E: energy;
E2: squared energy;
A: angle
F: float
termX: constant of type/dimension X

An example grammar to construct features for a physics (Higgs) dataset

Evolved features

Dimensionally-Aware GP
• Each GP node has a dimensionality vector

• Each dimension indicates the exponent of the corresponding unit of measurement
• E.g., [0,0,1] means the dimension of mass

• The vector is changed/propagated by functions

71
Keijzer, M., & Babovic, V. (1999, July). Dimensionally aware genetic programming. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 2 (pp. 1069-1076).

Dimensionally-Aware GP
• Each GP node has a dimensionality vector

• Each dimension indicates the exponent of the corresponding unit of measurement
• E.g., [0,0,1] means the dimension of mass

• The vector is changed/propagated by functions

72
Keijzer, M., & Babovic, V. (1999, July). Dimensionally aware genetic programming. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 2 (pp. 1069-1076).

Dimension transformation to resolve
dimension violation

Dimensionally-Aware GP
• CullingGP: Dimensionality-Aware Breeding

• Select two parents by tournament selection (the same as standard GP)
• Generate many offspring (> 2)
• Select the offspring with the best goodness-of-dimension

• Multi-objective (error vs goodness-of-dimension)
• Better test performance for noise data, better dimension violation

73
Keijzer, M., & Babovic, V. (1999, July). Dimensionally aware genetic programming. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 2 (pp. 1069-1076).

Dimensionally-Aware GP for Scheduling Rules
• The job shop scheduling state features have three dimensions

• TIME: processing time, due date, slack, …
• COUNT: number of remaining operations, number of jobs in the queue, …
• WEIGHT: the weight (importance) of a job

• Dimensionality vector (𝑇, 𝐶,𝑊)
• Minimise Dimension gap:

74
Mei, Y., Nguyen, S., & Zhang, M. (2017, November). Constrained dimensionally aware genetic programming for evolving interpretable dispatching
rules in dynamic job shop scheduling. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 435-447). Springer, Cham.

Dimensionally-Aware GP for Scheduling Rules
• Constrained DAGP

• 𝑓𝑖𝑡 𝑥 = 𝑜𝑏𝑗 𝑥 + 𝛼(𝑡) ∗ 𝑑𝑖𝑚𝐺𝑎𝑝(𝑥)
• The penalty is adaptive based on balance between dimGap and obj in the population

• 𝛼 0 = − 97: G!5H04 474I ,732 474I
:0/ G!5H04 474I

• 𝛼 𝑡 + 1 = 𝛼 𝑡 − 𝜂 ∗ 97: G!5H04 474J ,732 474J
:0/ G!5H04 474J

+ 𝛼(𝑡)

• 𝜂 = 0.01 is the learning rate

• Dimensions of the JSS terminals/state features

75
Mei, Y., Nguyen, S., & Zhang, M. (2017, November). Constrained dimensionally aware genetic programming for evolving interpretable dispatching
rules in dynamic job shop scheduling. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 435-447). Springer, Cham.

Dimensionally-Aware GP for Scheduling Rules
• Similar performance with the baseline GP (much better than CullingGP)
• Much smaller dimension violation than the baselineGP (larger than CullingGP)

76
Mei, Y., Nguyen, S., & Zhang, M. (2017, November). Constrained dimensionally aware genetic programming for evolving interpretable dispatching
rules in dynamic job shop scheduling. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 435-447). Springer, Cham.

rule = B1/B2
B1 = max((SL+PT)*max(min(SL,

WINQ),PT)/WKR,PT)
B2 = W*WKR/(max((SL+PT),WKR)

*max(W,PT))

An evolved rule for minimising TWT

Grammar Guided GP
• Define the meaningful combinations (can include dimensionality consistency) in the GP

tree

78
McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’neill, M. (2010). Grammar-based genetic programming: a survey. Genetic Programming and
Evolvable Machines, 11(3), 365-396.

Grammar Guided GP
• Grammar for rational polynomials

• Grammar for ideal gas law

• Crossover and mutation respect the grammar
• Swap subtrees with the same type

79
McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’neill, M. (2010). Grammar-based genetic programming: a survey. Genetic Programming and
Evolvable Machines, 11(3), 365-396.

Grammar Guided GP for Association Rule Mining
• Items ℐ = {𝑖9, 𝑖-, … , 𝑖:}, transactions 𝒯 = {𝑡9, 𝑡-, … , 𝑡H}, 𝑡I ⊆ ℐ is a subset of ℐ
• Association rule 𝑋 → 𝑌, 𝑋 ⊂ ℐ, 𝑌 ⊂ ℐ, 𝑋 ∩ 𝑌 = ∅
• If the antecedent 𝑋 ⊂ 𝑡I , then highly likely that the consequent 𝑌 ⊂ 𝑡I as well

• 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋): number of transactions containing 𝑋
• 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌): number of transactions containing both 𝑋 and 𝑌

• 𝐶𝑜𝑛𝑑𝑖𝑓𝑒𝑛𝑐𝑒 𝑋 → 𝑌 = JKLLMNO P→R
JKLLMNO(P)

• 𝑓𝑖𝑡 𝑅 = 𝑋 → 𝑌 = JKLLMNO S
JKLLMNO(P)

∗ JKLLMNO S
JKLLMNO(R)

80

Padillo, F., Luna, J. M., & Ventura, S. (2019). A grammar-guided genetic programming algorithm for associative classification in big data. Cognitive
Computation, 11(3), 331-346.

<Rule> ::= <Antecedent>, <Consequent>
<Antecedent> ::= <Condition> (<Condition> AND <Condition>)*
<Consequent> ::= class=value
<Condition> ::= <Numerical> | <Nominal>
<Numerical> ::= name IN Min_value, Max_value
<Nominal> ::= name=value

Grammar Guided GP for Association Rule Mining
• Step 1: Rule extraction

• Step 2: Rule selection

81

Padillo, F., Luna, J. M., & Ventura, S. (2019). A grammar-guided genetic programming algorithm for associative classification in big data. Cognitive
Computation, 11(3), 331-346.

<Rule> ::= <Antecedent>, <Consequent>
<Antecedent> ::= <Condition> (<Condition> AND <Condition>)*
<Consequent> ::= class=value
<Condition> ::= <Numerical> | <Nominal>
<Numerical> ::= name IN Min_value, Max_value
<Nominal> ::= name=value

<Classifier> ::= <Rules>, <DefaultClass>
<Rules> ::= rule (rule)*
<DefaultClass> ::= class=value

Grammar Guided GP for Association Rule Mining
• Can get better effectiveness and complexity
• For rules set 𝐶 = {𝑅9, … , 𝑅:}
• 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑛∑=E9: 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑅=)

82

Padillo, F., Luna, J. M., & Ventura, S. (2019). A grammar-guided genetic programming algorithm for associative classification in big data. Cognitive
Computation, 11(3), 331-346.

Effectiveness

Complexity

Canonical Form Function Expressions In Evolution (CAFFEINE)

• Special layer-based representation
• Linear layer: polynomial/rational of the variables + non-linear components
• Non-linear layer: a non-linear function of the linear layer
• Example: −10.3 + 3.1 ∗ 𝑥T + 1.87 ∗ 𝑥9 ∗ log −1.95 + 10.3 ∗ 𝑥- ∗ 𝑥U /𝑥V

• Use grammar to implement

83

REPVC ::= VC | REPVC * REPOP | REPOP
REPOP ::= REPOP * REPOP | OP_1ARG(W + REPADD) |

OP_2ARG(2ARGS)
2ARGS ::= W + REPADD, MAYBEW | MAYBEW, W+REPADD
<OP_2ARG> ::= DIVIDE | POW | MAX | …
<OP_1ARG> ::= INV | LOG10 | …
<VAR> ::= X1 | X2 | … | Xn | W

VC is a vector representing the
polynomial/rational, e.g. [1,0,-2,1]=𝑥K ∗ 𝑥L/𝑥M"

McConaghy, T., & Gielen, G. (2006, July). Canonical form functions as a simple means for genetic programming to evolve human-interpretable
functions. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 855-862)

Canonical Form Function Expressions In Evolution (CAFFEINE)

• Performs relatively well, and can get simple models

84

McConaghy, T., & Gielen, G. (2006, July). Canonical form functions as a simple means for genetic programming to evolve human-interpretable
functions. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 855-862)

GP with Simplification
• GP tree tends to have many redundant branches (introns)
• Use algebraic simplification to simplify the trees during GP process

85

Zhang, M., & Wong, P. (2008). Explicitly simplifying evolved genetic programs during evolution. International Journal of Computational Intelligence
and Applications, 7(02), 201-232.

GP with Simplification
• With proper simplification frequency, can achieve faster training time and smaller size

without worsening accuracy
• Evolved rules easier to interpret

86

Zhang, M., & Wong, P. (2008). Explicitly simplifying evolved genetic programs during evolution. International Journal of Computational Intelligence
and Applications, 7(02), 201-232.

GP with Simplification
• More simplification based on logic operators

• Get the sign of the features using domain knowledge
• E.g., the job shop state attributes for scheduling rule learning

• Propagate the sign in the tree

87

Precondition(s) Simplification

Min(A, A+B) and B is always non-negative A

Min(A, A+B) and B is always negative A+B

Min(A, A-B) and B is always non-positive A-B

Min(A, A+B) and B is always non-positive A

Panda, S., & Mei, Y. (2021). Genetic Programming with Algebraic Simplification for Dynamic Job Shop Scheduling. IEEE CEC.

GP with Simplification
• Numerical simplification

• Empirically, how much a child contributes to its
parent’s output

• Check the value range of the nodes
• If the range of a child is much smaller than the

parent’s min absolute value, simplify the
parent to the other child

• If the range of a node is much smaller than its
own min absolute value, simplify it to a
constant

• Can show comparable classification
performance and reduce the program
size dramatically (~40%)

88

Kinzett, D., Johnston, M., & Zhang, M. (2009). Numerical simplification for bloat control and analysis of building blocks in genetic programming.
Evolutionary Intelligence, 2(4), 151-168.

GP with Phenotypic Simplification
• Define phenotypic behaviour of GP trees

• E.g., predicted values in regression, priority values in decision making

• Group/Cluster the GP trees based on phenotypic behaviour
• Simplification: replace a GP tree with a smaller/simpler tree with the same

phenotypic behaviour
• Niching GP

• Niching in the GP population based on phenotypic behaviour
• External archive: the smallest GP individual in each niche
• Multi-source breeding: select the parents from the original population and archive

89

Wang, S., Mei Y., Zhang, M. & Yao X. (2021). Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. IEEE Transactions on
Evolutionary Computation.

GP with Phenotypic Simplification
• Niching GP

90

Wang, S., Mei Y., Zhang, M. & Yao X. (2021). Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. IEEE Transactions on
Evolutionary Computation.

GP with Phenotypic Simplification
• Results on Evolving routing policy for UCARP

• Better balance between test performance and tree size

91

Wang, S., Mei Y., Zhang, M. & Yao X. (2021). Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. IEEE Transactions on
Evolutionary Computation.

Ensemble GP
• “Two heads are better than one”
• A group of simple GP rules can make the same/better decisions than a single

complex GP rule
• Simple and reasonably good rules
• Mutually complementary

92

=

+ + + …

Ensemble GP
• How to evolve the simple, reasonably good, and complementary GP rules?

• Ensemble learning methods: bagging, boosting
• Cooperative co-evolution: the context vector is a group of rules

• Bagging GP
• Divide GP into multiple cycles, each cycle evolves one rule
• Used different training subset in each cycle
• Limitation: GP is slow to get each rule

• Boosting GP
• Learn each rule sequentially, using the same training set
• Adjust the weight of each training sample
• 𝑓𝑖𝑡 𝑥 = ∑?∈ONB=:𝑤 𝑆 ∗ 𝑡𝑐(𝑥, 𝑆)
• Limitation: GP is slow to get each rule, cannot use large training set, poor generalization

• CCGP
• Co-evolve each rule in a sub-population, use context vector to evaluate fitness
• Limitation: hard to consider complementary

93

Ensemble GP
• Empirical comparison for evolving routing policies (output the priority of each customer)

• 5 rules (5 x 200 for CCGP), 5 training samples
• Depth = 4 (simple enough)
• Aggregation: sum up the outputs of the rules

• BaggingGP and Boosting GP are very poor
• CCGP is good

• No worse performance
• Smaller size per tree

94

Instance SimpleGP BaggingGP BoostingGP CCGP

tc size tc size tc size tc size

ugdb1 367.8 11.9 397.1 12.2 399.4 12.9 364.9 5.2

ugdb2 386.1 11.9 424.9 12.8 433.0 12.2 372.3 6.7

ugdb8 485.0 12.8 548.7 12.2 568.9 13.1 467.7 6.9

ugdb23 255.5 12.4 266.4 12.7 268.8 12.7 256.0 5.6

uval9A 348.0 13.1 374.0 12.2 375.9 12.9 341.3 7.6

uval9D 501.1 13.5 561.4 11.8 542.2 12.1 490.4 7.4

uval10A 444.4 11.8 475.2 11.8 471.9 12.1 445.2 6.9

uval10D 641.7 13.1 693.9 12.9 685.2 12.6 649.1 6.7

Wang, S., Mei, Y., Park, J., & Zhang, M. (2019, December). Evolving ensembles of routing policies using genetic programming for uncertain
capacitated arc routing problem. In 2019 IEEE SSCI (pp. 1628-1635). IEEE.

Ensemble GP
• However, CCGP cannot guarantee that the rules are complementary

• One rule can dominate the decision of the ensemble
• Diversity may not be enough

• Consider niching to maintain diversity
• DivNichGP

• A single population with different niches
• Different niches tend to complement each other
• No need to pre-define the number of rules (depends on number of niches)

95
Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101).

Ensemble GP
• Use clearing to construct niches

• In each niche, only k best individuals are retained, others are set to very bad fitness
• Use phenotypic distance

• Ensemble selection
• Sort final individuals by fitness
• Include them one by one into the ensemble
• Stop if the ensemble cannot improve

96
Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101).

Ensemble GP
• Test on evolving UCARP routing policies

• SimpleGP has max depth of 8, CCGP and DivNichGP have max depth of 4
• DivNichGP has much better performance and size

97
Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101).

Instance SimpleGP CCGP DivNichGP

tc size tc size tc size

ugdb1 354.8 75.7 364.9 5.2 348.4 21.3

ugdb2 377.1 68.3 372.3 6.7 364.8 21.4

ugdb8 499.8 67.5 467.7 6.9 467.4 23.4

ugdb23 252.1 68.3 256.0 5.6 250.9 19.9

uval9A 340.3 65.3 341.3 7.6 333.4 21.5

uval9D 478.3 68.3 490.4 7.4 504.5 25.1

uval10A 440.6 58.1 445.2 6.9 439.4 21.6

uval10D 630.2 65.7 649.1 6.7 636.8 24.8

Ensemble GP
• Ensemble size varies for different instances
• DivNichGP has better complementary (none of the rules dominates the decisions)
• Rules easier to interpret

98
Wang, S., Mei, Y., & Zhang, M. (2019, July). Novel ensemble genetic programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of GECCO (pp. 1093-1101).

Instance Ensemble size

ugdb1 5.7

ugdb2 9.2

ugdb8 1.6

ugdb23 7.2

uval9A 8.9

uval9D 1.2

uval10A 6.0

uval10D 1.8

A good ensemble for ugdb1

GP for Decision Tree Induction
• (Shallow/Small) decision tree is a class of easy-to-interpret models
• Conventional DT learning algorithms (ID3, C4.5, …) are mainly greedy local

search
• Use GP to automatically induce decision trees by more global search
• Each attribute/feature is a function

• #children = #possible values of the feature
• Nominal features (discretize the features)

• Terminal set: class names
• Function set: feature tests

99
Koza, John R. "Concept formation and decision tree induction using the genetic programming paradigm." International Conference on
Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1990.

GP for Decision Tree Induction
• Grammar-based GP (BNF) grammar

• Variable is a feature
• Threshold is a real number

100
Li, J., Li, X., & Yao, X. (2005, September). Cost-sensitive classification with genetic programming. In 2005 IEEE congress on evolutionary
computation (Vol. 3, pp. 2114-2121). IEEE.

<Tree> ::= “if-then-else” <Cond><Tree><Tree> | Class
<Cond> ::= <Cond> “And” <Cond> | <Cond> “Or” <Cond> |

“Not” <Cond> | Variable <RelationOperation> Threshold
<RelationOperation> ::= “>” | “<“ | “=“

GP for Decision Tree Induction
• Use strongly typed GP to generate valid DTs (All continuous features)

• Three types
• Variable: Int[0, #features-1], access the value of a feature, ONLY terminals have this type.
• Constant: Double[-10,10], coefficient/weight, ONLY terminals have this type.
• Classification: Int[0, #classes-1], predict the class, BOTH terminals and functions have this type.

101
Bot, M. C., & Langdon, W. B. (2000, April). Application of genetic programming to induction of linear classification trees. In European
Conference on Genetic Programming (pp. 247-258). Springer, Berlin, Heidelberg.

Terminal set Variable, Constant, Classification

Function set
CheckCondition1Var,

CheckCondition2Vars,
CheckCondition3Vars

CheckCondition1Var

Constant

Variable Classification

ClassificationThreshold

GP for Decision Tree Induction
• Strongly typed GP, both continuous and nominal features (binary classification)

• Terminals include
• Features: integer, index of the feature
• Values: real [0,1), threshold for a numerical feature, or the index of the nominal feature value
• Class: binary, leaf nodes of the tree

• Function node: integer x real x binary x binary -> binary

• If feature is numeric with the range [𝑙, 𝑢], then 𝑜𝑢𝑡 = C𝐿, 𝑖𝑓 𝑥!"#$%&" ≤ 𝑢 − 𝑙 ∗ 𝑣𝑎𝑙𝑢𝑒 + 𝑙,
𝑅, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• If feature is nominal taking from {𝑉', … , 𝑉(}, then 𝑜𝑢𝑡 = C
𝐿, 𝑖𝑓 𝑥!"#$%&" = 𝑉(∗*#+%" ,

𝑅, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

102
Zhao, Huimin. "A multi-objective genetic programming approach to developing Pareto optimal decision trees." Decision Support Systems
43.3 (2007): 809-826.

feature value L R

Type Terminal Function

Integer Feature

Real Value

Binary Class Node

GP for Decision Tree Induction
• Example

• Preg is feature 1
• Skin is feature 4
• Mass is feature 6

103
Zhao, Huimin. "A multi-objective genetic programming approach to developing Pareto optimal decision trees." Decision Support Systems
43.3 (2007): 809-826.

GP for Decision Tree Induction

104
Zhao, Huimin. "A multi-objective genetic programming approach to developing Pareto optimal decision trees." Decision Support Systems
43.3 (2007): 809-826.

• GP crossover and mutation
• Standard tree-based crossover: swap two random sub-trees of the parents
• Standard tree-based mutation: randomly select a sub-tree of the parent, and replace with a

newly generated sub-tree

GP for Post-hoc Global Interpretability
• Use GP to evolve a decision tree to approximate a black-box ML model
• Multi-objective GP

• F1: reconstruction ability (max F1-score)
• F2: interpretability (#split points)

• Strongly-typed GP

105Evans, B. P., Xue, B., & Zhang, M. (2019, July). What's inside the black-box? a genetic programming method for interpreting complex
machine learning models. In Proceedings of GECCO (pp. 1012-1020).

GP for Post-hoc Global Interpretability
• Better trade-off between accuracy and interpretability
• Has potential to further improve reconstruction ability (f1-socre)

106Evans, B. P., Xue, B., & Zhang, M. (2019, July). What's inside the black-box? a genetic programming method for interpreting complex
machine learning models. In Proceedings of GECCO (pp. 1012-1020).

GP for Post-hoc Local Interpretability
• Given an input of a complex pre-trained ML model: 𝒙 ∈ 𝑅&

1) Generate 𝑚 sample points around the input 𝒙 from a multivariate Gaussian distribution
𝒩(𝒙, 𝐼:×𝜎), called noise set 𝜂

2) Find an explainer model which is easy to interpret, and can mimic the behavior of the original
complex model

3) Use GP to evolve the explainer model, to minimize the RMSE between the GP model and the
complex pre-trained ML model

107Ferreira et al. (2020) Applying Genetic Programming to Improve Interpretability in Machine Learning Models. arXiv

Dataset with 1500 samples, 2 features,
3 classes

Input to be
explained

Noise set with 100 samples around the input, the prediction of
the pre-trained complex model and the GP explainer model

𝑥N + 𝑥K + 9.558

GP for Post-hoc Local Interpretability
• Explain the pre-trained Random Forest, DNN, SVM/R models
• Compared with Lime and Decision Tree explainers
• Better overall error on the tested classification and regression problems

• Example: Boston regression dataset
• One input point: GPX model is

,OJ=>J-P
Q ,RPS
-..012

• Another input point: GPX model is ,-RTU,,V,J>J
+ 𝑥3$&#$45

• Pupil-teacher ratio by town is important in both cases
• Different regions could have different criteria

108Ferreira et al. (2020) Applying Genetic Programming to Improve Interpretability in Machine Learning Models. arXiv

Explainer Average Error Std Dev

Lime 7.577 36.913

DT 0.083 0.329

GPX 0.065 0.508

GP with Visualisation
• Manifold learning: learn a mapping from high-dimensional data to much lower-

dimensional (e.g. 2 or 3) data that can be visualised
• PCA (linear), MDS (non-linear), t-SNE (non-linear)

• The state-of-the-art manifold learning methods are not interpretable
• No mapping back to the original features, transformation is opaque

• GP-MaL: a multi-tree GP, each tree representing one transformed dimension
• Terminal set: the scaled input features, random constant
• Function set:

• Fitness function:
• Preserving neighbourhood in the low-dimensional space

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1
𝑛`
�
�∈�

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑁�, 𝑁��

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑁,𝑁� = �
�∈�

𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑠 𝑎,𝑁 − 𝑝𝑜𝑠 𝑎,𝑁�

109Lensen, A., Xue, B., & Zhang, M. (2019, April). Can genetic programming do manifold learning too?. In EuroGP (pp. 114-130). Springer, Cham.

GP with Visualisation
• Can achieve better data separation (higher accuracy) on some datasets
• Can potentially interpret the trees (they are symbolic)

110Lensen, A., Xue, B., & Zhang, M. (2019, April). Can genetic programming do manifold learning too?. In EuroGP (pp. 114-130). Springer, Cham.

Dermatology dataset

GP with Visualisation
• T-distributed stochastic neighbour embedding (t-SNE) is a powerful manifold

learning / dimensionality reduction method
• However, how t-SNE creates the visualisation from original features is opaque
• GP-tSNE: Multi-objective Multi-tree GP (MODA/D)

• Terminal set: the features, mean of each feature and its 3 nearest neighbours, constants
• Function set: similar as GP-MaL
• Fitness function:

• F1: t-SNE based: 𝐾𝐿(𝑃| 𝑄 = ∑4∑6 𝑝46 log
3-A
7-A

• 𝑝6|4 =
9:; <

S-WSA
Q

QX-
Q

∑YZV 9:; <
SYWSV

Q

QX-
Q

, 𝑝46 =
3-|A>3A|-

-?
, 𝑞46 =

'> @-<@A
Q W\

∑YZV '> @Y<@V
Q W\

• F2: model complexity, count the number of nodes in the tree

111Lensen et al. (2020) Genetic Programming for Evolving a Front of Interpretable Models for Data Visualization, IEEE Transactions on Cybernetics

• x’s are in high-dimensional space
• y’s are in low-dimensional space

GP with Visualisation
• Better results than GP-MaL, although may not be as good as t-SNE

112Lensen et al. (2020) Genetic Programming for Evolving a Front of Interpretable Models for Data Visualization, IEEE Transactions on Cybernetics

GP with Visualisation
• Good balance between cost and interpretability

113Lensen et al. (2020) Genetic Programming for Evolving a Front of Interpretable Models for Data Visualization, IEEE Transactions on Cybernetics

Visualising GP Process
• It is important to understand how the population evolves during the GP process
• Visualise the phenotypic representation using Growing Neural Gas Network

114Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research
frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.

Visualising GP Process
• Tree-based GP (80% crossover, 15% mutation)

• Starts to show trend at gen 10
• Quick converge since gen 20

115Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research
frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.

Gen 1 Gen 10
Gen 20

Gen 30 Gen 40 Gen 50

Visualising GP Process
• Tree-based GP (15% crossover, 80% mutation)

• Slower convergence
• Still exploring at gen 30
• Finally converge

• Higher mutation
• Higher exploration

116Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research
frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.

Gen 1 Gen 10 Gen 20

Gen 30 Gen 40 Gen 50

Visualising GP Process
• Can also see how the population moves
• Can observe phenotypic and fitness diversity

117Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs for genetic programming [research
frontier]. IEEE Computational Intelligence Magazine, 13(4), 77-94.

TGP (80% crossover) TGP (15% crossover)

Darker nodes have better fitness

Linear GP
• Linear program, very similar to the real program, so easier to understand
• Test on bioinformatics: Metabolomics Data for Osteoarthritis

• 167 features in total

118
Hu, Ting. "Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics?." Genetic Programming Theory and Practice XVII.
Springer, Cham, 2020. 63-77.

Outline
• Introduction to XAI
• Introduction to GP
• Better Interpretability Through GP
• Challenges and Future Directions

119

Challenges and Future Directions
• Measures of Interpretability

• Why (How much) is A more interpretable/explainable than B? – subjective
• Questionnaire/Interview?

• Forms of interpretability, e.g., contrastive: why event P happened instead of
another event Q?
• Cross-disciplinary: understand interpretability

• Cognitive science
• Social science
• Psychology
• …

• Tradeoff between Interpretability and Accuracy

120
Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence, 267, 1-38.

Conclusions
• Interpretable AI Techniques

• Intrinsic interpretability
• Post-hoc explanation

• Global Interpretation: interpret the whole model
• Local Interpretation: interpret for a specific instance
• GP has a great potential for XAI

• Symbolic + computational
• Flexible representation
• Multi-objective

121

